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1. GENERAL NOTES ON LINES AND SURFACES 

The POINT is a geometrical entity without dimension. 

The LINE is a one-dimensional entity generated by the continuous movement of the point. 

Lines can be CURVED or non-curved; non-curved lines are called STRAIGHT LINES. 

Each straight line has a DIRECTION; Direction is the common property of a family of parallel 

lines. 

Each straight line contains an IMPROPER POINT, that is, a point at infinity. To each direction of 

lines corresponds only one improper point, that is, all parallel lines to each other have the 

same point of infinity, hence it is said that parallel lines are lines that intersect each other at 

infinity.  

SURFACE is a two-dimensional entity generated by the continuous movement of the line. 

The GENERATRIX is the line, deformable or non-deformable, that moves in space to generate 

the surface. 

The DIRECTRIX is the line or surface on which the generatrix rests in its movement. 

If the directrix is a surface, then the generated surface is said to have a CORE. 

When a straight generatrix moves continuously in space, retaining the direction, supported by 

a straight directrix with a direction different from its own, the PLAN is generated. 

Each plan has an ORIENTATION. Orientation is the common property of a family of parallel 

planes. 

Each plane contains an IMPROPER LINE, that is, a line at infinity. 

To each orientation of planes corresponds only one improper line, that is, all planes parallel to 

each other have the same line of infinity, hence it is said that parallel planes intersect at 

infinity. 

An orientation contains a multitude of directions. 

The locus of all improper points and all improper lines is the IMPROPER PLAN, that is, the plane 

at the infinity.  

When a surface can be generated by moving a straight line it is said to be RULED. 

When a surface cannot be generated by moving a straight line, it is said to be CURVED. 
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The ORDER of an algebraic surface, that is, the order or degree of the polynomial that defines 

it, can be interpreted as the maximum number of points at which a line can intersect it. For 

example, the plane is a 1st order surface, and a spherical surface is a 2nd order surface. 

When a ruled surface can be “unrolled” to a plane without causing “folds” or “tears” the 

surface is said to be DEVELOPABLE; only ruled surfaces can be developable, although not all 

ruled surfaces are. 

2. PLANAR LINES  

There is no single criterion for classifying lines as flat or spatial. However, several criteria can 

be used to group them in families. Different criteria can lead to identical lines in different 

families. Or a one may lead to the exclusion of specific lines.  

2.1. Conic lines 

A CONICAL line results from the intersection produced by a plane on a conical surface (Figure 

1) and can be represented by a second-degree polynomial1 as follows: 

𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 +𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0     (1) 

 

figure 1: Conic line according to the relative position of the sectioning plane and the conical surface. 

The conic lines are of three types: ellipse, parabola, and hyperbola. 

The ellipse is produced when the plane intersects all the generatrices of the conical surface. 

The parabola is produced when the plane is parallel to one generatrix of the conical surface. 

The hyperbola is produced when the plane is parallel to two generatrices of the conical 

surface. 

 
1 This expression can be generalized to higher degrees giving rise to other types of lines (cubic, quartic, 
…). 
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2.1.1. Ellipse 

The ellipse (of which the circumference is a particular case) is defined as the flat curve in which 

all points meet the condition that their summed distances to two fixed points called foci is 

constant. 

 

figure 2: Definition, tangent and normal (left). Tangent line from an exterior point (right). 

The ellipse can be obtained by an affine transformation of a circumference (figure 4), and is 

defined by two conjugated diameters (corresponding to a circumscribed parallelogram tangent 

to the ellipse at the midpoints of the sides). When two diameters are conjugated, one bisects 

all chords parallel to the other and vice versa. 

 

figure 3: Tangent with a given direction (left). Ellipse defined by two conjugated diameters d1 and d2 (right). 
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figure 4: Affine transformation between ellipse and circumference with the determination of the principal axis. 

2.1.2. Parabola 

A parabola is a flat curve that is defined by the condition that for any point on the curve, the 

distance to a fixed point, called focus, and the distance to a fixed line, called directrix, is the 

same.  

 

figure 5: Definiton, tangent and normal (left). Tangent from a given point. 

The parabola can be defined by two tangents and the respective points of tangency as it can 

be seen in the next figure. In that case the points of the parabola can be defined recursively.  

 

figure 6: Parabola defined by two tangent lines s and t and the corresponding tangent points S and T. 
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2.1.3. Hyperbola 

The hyperbola is a flat curve that is defined similarly to the ellipse, but with the distinction that 

the difference of the distances from a point on the curve to the foci is constant. 

 

figure 7: Definition (left). Tangent from a point on the curve, tangent and normal (right). 

2.1.4. Free curves 

From a practical point of view, it is important to have a type of line that can represent those 

lines commonly called free lines. Free lines are those that result from a spontaneous drawing 

gesture. These lines do not have a geometric definition a priori. However, when representing 

them on a computer, it is necessary to rationalize them in some way. The simplest way to 

rationalize them, although usually resulting in unattractive practical result, is to represent 

them through a sequence of ARCS OF CIRCUMFERENCE, as shown in figure 8. This way of 

rationalizing a free line originates from the analogical drawing as it can be understood by the 

implicit economy of means. 

 

figure 8: Rationalizing a line trough a sequence of arcs of circumference. 
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2.2. Splines 

One way to designate freeform lines is by using the term SPLINE. This term goes back to the 

use of wooden strips that were bent and curved to generate melds for aeronautical 

construction2. In geometric terms, a spline is a smooth curve based on the joining of one or 

more curves defined by polynomial functions that are adjacent at points called INTERNAL 

KNOTS (K) 3. The endpoints of a spline are also called KNOTS. 

2.2.1. Bézier curve 

The simplest spline is the BÉZIER CURVE4. A Bezier curve is a B-spline (see next section) without 

Internal Knots (K). A Bézier curve is defined by CONTROL POINTS (C) which are in precise 

relationship with its DEGREE (D): 

𝐶 = 𝐷 + 1     (2) 

In figure 9 we have three Bézier curves, with degree 2, 3 and 4, from left to right, respectively. 

Note that a degree 1 Bezier curve is no more than a STRAIGHT LINE SEGMENT. 

 

figure 9: Bézier curves of degree 2, 3 and 4. 

In the curves shown in figure 9, the knot vectors are, respectively, K={0.0,0.0,1.0,1.0}, 

K={0.0,0.0,0.0,1.0,1.0,1.0} and K={0.0,0.0, 0.0.0.01.0,1.0,1.0,1.0}. Note that the number of 

knots is twice the degree of the curve. Another important rule is that the first geometric point 

 
2 See Wikipedia article (http://en.wikipedia.org/wiki/Spline_%28mathematics%29).  

3 The internal knots correspond to the points at which the various polynomial curves are adjacent in 
geometric space. Spline knots correspond to a knot vector in parametric space. When speaking of 
uniform node spacing, in the designation of uniform B-Splines, reference is made to spacing in 
parametric space rather than geometric space. In this regard see the article on B-Splines at Wolfram 
MathWorld (http://mathworld.wolfram.com/B-Spline.html).  
 
4 See Wikipedia article (http://en.wikipedia.org/wiki/B%C3%A9zier_curve).  

http://en.wikipedia.org/wiki/Spline_%28mathematics%29
http://mathworld.wolfram.com/B-Spline.html
http://en.wikipedia.org/wiki/B%C3%A9zier_curve
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of the curve corresponds to the node whose index equals the degree. For example, on degree 

two curve the second node is 0.0 and this node corresponds to the first endpoint of the curve. 

Similarly, if we follow the knot vector in reverse order, we identify the knot corresponding to 

the second endpoint of the curve. Still as an example, in a Bézier of degree 2, the geometric 

points of the curve correspond, in the parametric space, to the values between parameter K2 

and K3, that is, between 0.0 and 1.0. It is further important to note that equal spacing in 

parametric space does not correspond to equal spacing in geometric space. 

De Casteljau's algorithm allows us to understand the graphical construction of a Bézier curve 

whatever its degree. In figure 9 one can see the logic of the graphical construction of a Bezier 

curve of degree 3. It is important to realize that this logic can be generalized to any degree. 

 

figure 10: De Casteljau algorithm for the construction of a Bézier curve of degree 3. 

The figure illustrates the construction of a point given by the parameter t = 0.75. The 

parameter range for the construction of the Bézier curve is in this case given by the interval 

[0.0,1.0] since this is the interval corresponding to nodes K3 and K4. Parameter point 0.0 is 

point K3 and parameter point 1.0 is point K4, which coincides with the first point and last 

control point, respectively. Since the degree is 3, the algorithm implies 3 subdivision levels for 

constructing curve points. The number of subdivision levels is equal to the degree of the curve. 

An interesting point to notice is that a Bézier curve of degree 2 is a parabola, ie, it is a 

particular case of a conic line. Another interesting aspect to notice about the degree of the 

Bezier curve is that it is also related to the number of possible inflections in it. Thus, the 

number of possible inflections (I) is equal to: 

𝐼 = 𝐷 − 2        (3) 
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It is important to note that a Bézier curve cannot be used for the representation of conics in 

general, only parabolas. 

2.2.2. B-Splines 

One way to expand the use of Bézier curves is by using B-SPLINES (Basis Spline). In practice, a 

B-Spline is a smooth arrangement of Bézier curves. In other words, at the transition points 

(corresponding to the internal knots), the Bezier curves share the same tangent lines. A B-

Spline can be defined in two ways: through control points or through point interpolation. 

When a B-Spline is defined using control points, the curve does not pass through those points 

(although the knot vector can be defined so that the curve passes through the endpoints). 

When it is defined by point interpolation the curve passes through those points. Note that the 

interpolated points are not the internal nodes. In practice, B-Splines give us a way to construct 

Bézier curves that smoothly articulate with each other. B-Splines contain internal knots, that is, 

points at which two consecutive Bezier curves contact each other. If a B-Spline contains an 

internal knot, it means that it is composed of two Bezier curves, and so on. 

Let us return to the question of the knot vector, and its relation to the curve configuration, 

through examples. 

In figure 11 we have a B-Spline of degree 3 whose knot vector is 

K={0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0}. Since the degree is three, the first endpoint corresponds 

to knot K3=2.0 and the last endpoint corresponds to node K7=6.0. This knot vector has all 

elements equally spaced and so is called UNIFORM. If the elements of the vector are not 

equally spaced, it is said NOT UNIFORM. However, it turns out that the endpoints of the curve 

do not coincide with the first and last control points. Analysing the internal knots, we find that 

this curve is, in practice, an arrangement of 4 Bezier curves "glued" at the points 

corresponding to K4, K5 and K6. 
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figure 11: B-Spline of degree 3 whose knot vector is K={0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0}.  

In any case, the number of elements (N) of the knot vector is given by the expression: 

𝑁 = 𝐶 + 𝐷 − 1        (4) 

In the example of figure 12, we have B-Spline of degree 3 whose knot vector is 

K={0.0,0.0,0.0,1.0,2.0,3.0,4.0,5.0,6.0}. In this case, it is found that the first endpoint of the 

curve coincides with the first control point. Also this curve is an arrangement of 4 Bézier 

curves. 

 

figure 12: B-Spline of degree 3 whose knot vector is K={0.0,0.0,0.0,1.0,2.0,3.0,4.0,5.0,6.0}. 

In Figure 13 we have a B-Spline of degree 3 whose node vector is 

K={0.0,0.0,0.0,1.0,2.0,3.0,4.0,4.0,4.0}. In this case it turns out that the endpoints of the curve 
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coincide with the first point and last control point. This corresponds to the most commonly B-

Splines used. 

 

figure 13: B-Spline of degree 3 whose node vector is K={0.0,0.0,0.0,1.0,2.0,3.0,4.0,4.0,4.0}. 

Both Bézier curves and their generalization given by B-Splines are INVARIANT UNDER AFFINE 

TRANSFORMATION, that is, if we subject the control points of a B-Spline to an affine 

transformation, the transformed points are control the points of a B -Spline affine to the first 

one as illustrated in figure 14. 

 

figure 14: Two affine B-SPLINES. 

It should be recalled that an affine transformation transforms a parallelogram [ABCD] into 

another parallelogram [A'B'C'D’]. Note that the point P1' is related to the point P1, and it lies in 

the B-Spline affine to the first one. 
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2.2.3. NURBS 

However, B-Splines are not invariant under a PROJECTIVE TRANSFORMATION. That is, 

subjecting the control points of a B-Spline to a projective transformation, the homologous 

points of the control points are control points of a B-Spline which is not the perspective 

transformation of the first B-Spline, as shown in figure 15. 

 

figure 15: The two homologous curves (in continuous). The dot line is a B-Spline with control points C1’, C2’, C3’, 

C4’ and C5’ which are the transformation of points C1, C2, C3, C4 and C5 under a perspective transformation. 

It should be remembered that a projective transformation transforms any quadrilateral [ABCD] 

into any quadrilateral [A'B'C'D’]. In the transformation illustrated in figure 15, homologous 

control point points could be used as control points for a new B-Spline (dotted in figure 15 on 

the right). But this line does not correspond to the projective transformation of the B-Spline 

given in the left figure. The transformed curve is the black curve in the right figure. 

What line is this? 

This new line is called NURBS (Non-Uniform Rational Basis Spline). The designation Non-

Uniform refers to the fact that the elements of the knot vector may not be uniform (as we had 

already observed in B-Splines) and to a new parameter which is the definition of a weight 

associated with the control points whose effect is to pull or push the curve towards that point 

according to the higher or lower value associated with it. In a B-Spline all weights have a value 

of 1. In a NURBS, weights may be different from 1. If the weight of a control point is bigger 
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than 1, the curve is pulled to the control point. If the weight of a control point is less than 1, 

the curve is pushed away from the control point. This effect can be seen in figure 16. In this 

figure, a black B-Spline of degree 3 is drawn. By changing the weight of control point C5, there 

was an effect on the internal knots that were under the effect of that control point. Note the 

interesting fact that the internal knots have moved towards the control point; approached 

when weight was set to greater than 1 (green NURBS) and moved away when weight was set 

to less than 1 (blue NURBS). 

 

figure 16: The effect of the weight of a control point. 

Since only the weight of one control point changed, the internal knots influenced by that point 

moved in a straight line. However, if we change the weight in more than one control point, the 

attracting effect is combined at those points that are under their influence, as shown in figure 

17. 

 

figure 17: Changing the weight of multiple control points. 

A very interesting aspect about NURBS is that, considering the degree 2, and with the 

appropriate choice of weights, they can represent any conic line. Interestingly, therefore, the 

configuration illustrated in figure 8 is a particular case of a NURBS line. 
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3. SPATIAL LINES AND SURFACES 

A spatial line is a line that does not lie in a plane. 

A surface can be conceptually defined as the continuous movement of a line in space, 

deformable or not, subject to a certain law. As has been said for lines, there is no single surface 

classification criterion either. 

A line can result from the intersection of two surfaces. In this case it will usually be a spatial 

line. However, sometimes it may be a planar line. 

3.1. General notions on lines and surfaces 

3.1.1. Incidence conditions 

If the point P  lies on the line  d  and the line  d  lies to the surface   , then the point P  

belongs to the surface   . 

 

figure 18: Incidence condition of a point on a surface. 

3.1.2. Tangent (straight) line 

The point A  lies on the line  m  and the line  m  lies on the surface   . 

The line At , tangent to the line  m  at the point A , corresponds to the limit position of the 

secant line s ,when the point X  tends to the point A . 

If line At   is tangent to the line  m , it is also tangent to the surface   . 

P
[d]


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figure 19: A (straight) line tangent to a surface. 

3.1.3. Curvature 

A planar curved line is always contained in a plane. Other than the circumference, the 

CURVATURE (K) of the lines varies. The curvature of a line at a point is the inverse of the 

RADIUS OF CURVATURE (R) of the line at that point. And the radius of curvature of the line at 

one point is the radius of the OSCULATING CIRCUMFERENCE of the curve at that point. The 

centre of this circumference, the point C  in the figure below, can be considered as the 

limiting position of the intersection of two normal lines on the curve when the arc, defined by 

the points common to the curve and the normal, tends to zero, as shown in the following 

figure. 

 

figure 20: Centre of curvature of a curve at a point T. 

In the figure, it can be seen that we can assign a rectangular coordinate system associated with 

the straight lines t  and n , and of origin T , where, as the curve is planar, it is contained in its 

plane. The third axis of this coordinate system is a line passing through the point T  which is 

simultaneously perpendicular to the lines t  and n  which is called the BI-NORMAL line to the 

curve at the point T . 

A
X

t A

s
[m]


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These concepts can be extended to SPATIAL CURVES, that is, to non-planar curves. 

Two points infinitely close to a point T , one at each side, on a spatial curve define an 

OSCULATING PLAN, which contains the osculating circumference  c , the line tangent to the 

curve, t , and the normal line to the curve, n , at the point T . Similarly, the bi-normal line b , 

passes through the point T and is perpendicular to the plane of the osculating circumference. 

These three lines allows us to define a frame associated with the curve at the point T. This is 

known as the Frenet–Serret5 frame. 

 

figure 21: Local frame associated with a curve at a point T. 

In a spatial curve, the bi-normal rotates around the tangent as the point T  moves on the 

curve. The higher or lower rotation rate of the bi-normal is called TORSION. 

3.1.4. Continuity between curves 

Between curves various types of continuity can be established. In the curves of figure 22 there 

is only CONTINUITY OF POSITION between the curves  a  and   b , that is, there is a vertex V  

in the transition between the curves. This commonly called 𝐺0 continuity. 

 
5 See the Wikipedia article (https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas).  

https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas
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figure 22: Continuity of position – G0. 

In the curves of figure 23 there is CONTINUITY OF TANGENCY between the two curves  a  and 

 b , that is, at the transition point between the curves, both admit the same tangent line t . 

However, there is no continuity of curvatures, as can be seen from the graphs that illustrate 

the curvatures. This commonly called 𝐺1 continuity. 

 

figure 23: Tangency continuity between to lines – G1. 

If, at the point V , the curvatures of both lines are the same and the lines are tangent, then the 

lines are said to have CURVATURE CONTINUITY. This commonly called 𝐺2 continuity. If there is 

torsion continuity, then we have 𝐺3 continuity. 

3.1.5. Plane tangent to a surface 

Let two lines,  a  and  b  belonging to the surface   , be incident at the point P . 

Let 
at  and 

bt  be the lines tangent to the lines  a  and  b , respectively, at the point P . 

The plane  , defined by the lines 
at  and 

at , is the plane tangent to the surface    at the 

point P . 
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From the tangent plane to a surface, it is said to be the OSCULATING PLANE. 

 

figure 24: Tangent plane to a surface at a point. 

3.1.6. Normal (straight) line and normal plane 

Let the plane   be tangent to the surface    at the point P . 

Be  n  a line perpendicular to the plane    at the point P . 

The line n   is said to be the NORMAL LINE to the surface    at the point P . 

From a plane containing the line n   it is said to be a NORMAL PLANE to the surface    at the 

point P . 

 

figure 25: Normal line to a surface at a point P. 

3.1.7. Surface curvature 

Let n  be a normal line to the surface     at the point P . 



[a]

[b]

P

t a

t b



 P

n 
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Let   and   be the normal planes to the surface    at the point P . 

Let  c  (result of the intersection of the plane   with the surface   ) be the line of maximum 

curvature of the surface     at the point P . 

Let  d  (result of the intersection of the plane     with the surface   ) be the line of 

minimum curvature of the surface    at the point P . 

The planes containing the maximum and minimum curvature lines at a point are perpendicular 

to each other. 

 

figure 26: Principal normal planes and principal normal sections to a surface at a point P. 

If the tangent plane to the surface    at the point  P  divides the surface into four regions, 

two “up” from the plane and two “down”, then the surface has DOUBLE CURVATURE OF 

OPPOSITE SENSES at the point P . The surface is ANTICLASTIC at P . 

If the tangent plane to the surface     at the point P  only contains P   in its vicinity, then the 

surface has DOUBLE CURVATURE WITH THE SAME SENSE at the point P . The surface is 

SYNCLASTIC at P . 

If the tangent plane to the surface     at the point P   has in common with    only one 

passing line through P , then the surface has SIMPLE CURVATURE at the point P . 
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3.1.7.1. Mean curvature 

The MEAN CURVATURE (𝐾𝑚) of the surface    at the point P   is the average of the 

maximum and minimum curvatures. 

3.1.7.2. Gaussian curvature 

GAUSSIAN CURVATURE (𝐾𝑔) of the surface     at the point P   is the product of the 

maximum and minimum curvature. 

A developable surface has zero Gaussian curvature at all points. 

3.1.8. Surfaces intersection  

If two surfaces    and     intersect on a line  i , then there is at least one surface     that 

intersects the surface    on a line  a , intersects the surface     on a line  b , such that the 

line  a   intersects the line  b   at a point  I  on the line  i . 

 

figure 27: Intersection between surfaces. 

According to the intersection line, intersections can be classified in three ways. If the 

intersection line is single and closed there is a ONE PART INTERSECTION also called a PULLOUT 

INTERSECTION. 

 

One part Intersection. 

 [i]



[a]
[b]I


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If the intersection line has a double point, then it is a curve with a SINGULAR POINT. 

 

Singular point intersection. 

If there are two intersection lines, then there is a TWO PARTS INTERSECTION6 also called 

PENETRATION. 

 

Two parts intersection. 

3.1.9. Line tangent to the intersection line  

Let  i   be the line of intersection between surfaces     and   . 

Be P   a point of the line  i , therefore a common point between     e   . 

Let the plane    be tangent to the surface     at the point P . 

Let the plane    be tangent to the surface     at the point P . 

The line t , intersecting of the planes  and  , is the line tangent to the line  i   at the point 

P . 

 
6 See https://en.wikipedia.org/wiki/Intersection_curve . 

https://en.wikipedia.org/wiki/Intersection_curve
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figure 28: Tangent line as the result of the intersection of tangent planes. 

3.1.10. Tangency between surfaces  

If two surfaces    and    admit the same tangent plane   at all points P  of the line 

common to both, then the two surfaces are said to be tangent along the line  c . Meeting this 

condition ensures the “visually smooth transition” between surfaces, which is called 𝐺1 

continuity. However, there may be discontinuity at the curvature level. If there is continuity 

between surfaces at curvature level, it is said that there is continuity 𝐺2. A common test for 

assessing the type of continuity between surfaces is ZEBRA analysis7. 

 

figure 29: Two surfaces tangent along a common line share the same tangent planes at the points of that line. 

 
7 See the article (https://en.wikipedia.org/wiki/Zebra_striping_(computer_graphics).  



[i]

P



t

 





[c]

P



https://en.wikipedia.org/wiki/Zebra_striping_(computer_graphics)
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If two surfaces    and    are tangent along a line  i , then there is at least one surface     

that intersects the surfaces    and    along the lines  b  and  a , respectively, such that 

the lines  b  and  a  are tangent to each other at a point I  on the line  i . 

 

figure 30: Tangent surfaces and tangent lines. 

If two surfaces    and    are tangent along a line  i  and are both tangent to a surface    

along the lines  a  and  b , respectively, such that  a  and  b  intersect at point I  on the 

line  i , then the two lines  a  and  b  are tangent to each other at the point I . 

 

figure 31: Tangent surfaces and tangent lines. 

The same discussion of continuity about lines can be transposed to surfaces. 





[i]

I



[b]

[a]





[i]


[a] [b]

I
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3.1.11. Silhouette 

The silhouette of a surface    for an “observer” O  (projection centre) is the line of tangency 

 c  between the surface    and a conical surface    with vertex O . 

If the observer is at infinity, then    is a cylindrical surface. 

 

figure 32: Silhouette of a surface seen from a viewpoint O. 

3.1.12. Distinction between surface and solid 

Uma superfície é a entidade que delimita o volume do sólido. 

3.2. Surface classification by type of generatrix 

Surfaces can be classified according to multiple criteria. The type of generatrix is one of them. 

SURFACE CLASSIFICATION BY GENERATRIX TYPE  examples 

FACETED  POLYEDRIC SURFACES 
regular, semi-regular, irregular polyhedral 
meshes 

RULED 
(generated by 
straight lines) 

DEVELOPABLE 

PLANAR SURFACE llane 

defined by 1 POINT and 1 DIRECTRIX conical; cylindrical; prismatic; pyramidal 

defined by 2 DIRECTRICES 
Convoluted surfaces; surfaces of constant 
slope 

TANGENTIAL SURFACES tangential helicoid 

other surfaces  

NON DEVELOPABLE  

defined by 3 DIRECTRICES 
hyperbolic paraboloid; hyperboloid of 
revolution; cylindroid; conoid; ruled 
helicoids; skewed arc surfaces 

Other surfaces single face ruled surface 

CURVED 
(not generated 
by straight lines) 

 REVOLUTION SURFACES8 spherical; toric; ellipsoidal; others 

Others  serpentine; minimal surfaces; NURBS 9 

Tabela 1: Classification of surfaces. 

 
8 Note that there are surfaces of revolution that are developable (conical and cylindrical). Note that the 
surface of the hyperboloid of revolution can also be defined by three straight generatrices.  
9 Note that NURBS surfaces can be used as a representation of many other surfaces used in the table.  





O[c]
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3.2.1. Polyhedric surfaces 

The relationship between the number of edges (A), vertices (V) and faces (F) of any polyhedron 

topologically equivalent to a sphere is given by Euler's formula: 

𝑉 + 𝐹 = 𝐴 + 2   (5) 

A polyhedron whose vertices are the centers of the faces of another polyhedron is called DUAL 

of that one. 

3.2.1.1. Regular polyhedra 

All faces are regular polygons of only one type, all vertices belong to a spherical surface, they 

are the "Platonic Solids". 

 

figure 33: The five regular polyhedra 

 

3.2.1.2. Semi-regular polyhedra 

All faces are regular polygons of two or more types with constant edge length; all vertices 

belong to a spherical surface. They are also referred to as “Archimedes Solids”. All edges and 

vertices are congruent and can be obtained from regular polyhedra by some process of 

geometric transformation. This category may also include regular prisms and regular anti-

prisms although this is not normally common. 
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figure 34: The thirteen Archimedean Solids (in http://mathworld.wolfram.com/ArchimedeanSolid.html) 

3.2.1.3. Irregular polyhedra 

Faces are polygons of various types. Vertices may or may not belong to a spherical surface. The 

length of the edges is not constant. Examples of irregular polyhedra are pyramids, bipyramids, 

trunks of pyramid, prisms, trunks of prism. A bipyramid is a solid generated by the “sum” of a 

pyramid with its symmetrical relative to the base plane. Other types of irregular polyhedra are 

antiprisms, antipyramids, trunk of antiprisms and antiprismoids. 

An antiprismoid has two opposite faces which are polygons with different number of sides. 

In an antipyramid one of the polygons is replaced with an edge. 

http://mathworld.wolfram.com/ArchimedeanSolid.html
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An antiprism has two opposite faces which are polygons with the same number of sides. 

A trunk of antiprism has two opposite faces which are polygons with the same number of sides 

but in non-parallel planes. 

 

figure 35: Examples of irregular polyhedra. 

Another interesting type of polyhedron are Johnson's solids. These are polyhedra in which all 

faces are regular of more than one type, but are not regular, semi-regular, regular prisms, or 

regular anti-prisms. There are 92 in all. 

3.2.2. Surfaces of revolution 

A revolution surface is generated by the rotation of a GENERATRIX around an AXIS. 

A PARALLEL is an intersection produced at the surface by a plane perpendicular to the axis. 

A MERIDIAN is an intersection produced on the surface by a plane coplanar with the axis. 

If a parallel is the largest in its vicinity, it is called ECUATOR. 

If a parallel is the smallest in its vicinity, it is called a “BOTTLENECK” CIRCLE. 

If the surface admits tangent planes perpendicular to the axis at points which it has in common 

with that axis, then these points are called POLES. 

If the surface admits tangent planes perpendicular to the axis along parallels, these are called 

POLAR CIRCLES. 
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figure 36: Surface of revolution. 

3.2.2.1. Spherical surface 

The spherical surface may be conceptually designed as the result of rotating a circumference 

about a diameter. 

 

figure 37: Generating a sphere by rotating a circumference around a diameter. 

3.2.2.2. Spheroid 

The spheroid, or revolution ellipsoid, is a surface that is generated by rotating an ellipse 

around one of its major axes. It is said to be ELONGATED if the rotation is made about the 

major axis, and it is FLATENED if the rotation is made about the minor axis. 
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figure 38: Generation of the spheroid by rotating an ellipse about one of its major axis. 

3.2.2.3. Torus surface 

The torus surface is generated by rotating circumference about an axis contained in its plane. 

The axis is considered not to intersect the circumference. 

 

figure 39: Generation of a torus surface by rotating a circunference around a copalanar axis. 
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3.2.2.4. Revolution hyperboloid of one sheet 

The revolution hyperboloid of one sheet, which will later be seen to be also a ruled surface, is 

generated by the rotation of a hyperbola about its conjugated or non-transverse axis. 

 

figure 40: Generating the one sheet hyperbolid of revolution by rotating an hyperbola. 

3.2.2.5. Revolution hyperboloid of two sheets 

The two-sheet revolution hyperboloid is the surface generated by the rotation of the 

hyperbola around its transverse axis. 

 

figure 41: Generating the two sheet hyperbolid of revolution by rotating an hyperbola. 



33 
 

3.2.2.6. Revolution paraboloid 

The paraboloid of revolution is the surface generated by the rotation of the parabola about its 

axis. 

 

figure 42: Paraboloid of revolution by rotation a parabola around its axis. 

3.2.3. Developable surfaces 

For a surface to be developable it must be ruled. But this condition alone does not imply that 

the surface is developable. In addition to being ruled, it must also happen that each pair of 

generatrices infinitely close to each other are concurrent, that is, coplanar. From the 

statement it follows that a developable surface only admits one tangent plane for each 

generatrix. To development of a surface is the “unrolling” of the surface until it coincides with 

one of the tangent planes. In this operation the surface does not “stretch” or “shrink”, “tear” 

or “fold”. In this operation the lengths and angles are preserved. Solving concrete problems 

obviously depends on the surface present. Thus, different methods will be used to develop 

conical or cylindrical surfaces of revolution, conical or cylindrical oblique, convoluted, 

tangential, etc. 

As noted above, a developable surface has a Gaussian curvature at all points equal to zero. 

3.2.3.1. Conical, cylindrical, pyramidal, and prismatic surfaces 

The most common developable surfaces are conical, cylindrical, pyramidal, and prismatic 

surfaces.  
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figure 43: Developable surfaces passing through a point (that can be at infinity). 

3.2.3.2. Convoluted surface and tangential surface 

The convolute is defined by the geometrical locus of the lines that result from the tangency 

points of a pair of coplanar lines tangent to two given curved lines, which move in space while 

maintaining those conditions (tangency and coplanarity). 

Tangential surfaces are defined by the locus of the tangent lines to a spatial line. 

 

figure 44: Convuluted surface (left) and tangential surface (right). 

3.2.3.3. Tangential helicoid 

The tangential helicoid is a particular case of a tangential surface. In this case the directrix is a 

cylindrical helix. 
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figure 45: Tangential helicoid. 

3.2.3.4. Unrolling (graphical method) 

Developing a surface consists of unrolling it to a plane. One approach to this process is to 

define the surface by triangulation and then adjust these triangles in the plane. This process 

turns out to be valid for “developing” non-developable surfaces as all surfaces can be 

approximated by triangulation. 

 

figure 46: Developing a surface (graphical method). 

Some 3D modelling tools implement surface unrolling functions, such as Rhinoceros software. 

However, it turns out that the results are not correct when one tries to generalize the 

operation to non-developable surfaces. 
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3.2.3.5. Development of the surfaces of the cone of revolution cone and 

cylinder of revolution  

However, there are figures whose development is quite simple. It is the unrolling of the 

surface of the cylinder of revolution, which results in a rectangle, and the unrolling of the 

surface of the cone of revolution that results in a circular sector. 

 

figure 47: Developing the surface of a revolution cylinder considering the transformed line of the helix. 

 

figure 48: Developing the surface of a revolution cone. 

3.2.3.6. Developing the surfaces of the oblique cylinder and cone 

The oblique cylinder can be unrolled by approximating its surface to that of a prism, and the 

oblique cone can be unrolled by approximating its surface to that of a pyramid. The result is 

better the more refined the approximation. 
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figure 49: Unrolling of the surface of the oblique cylinder. 

 

figure 50: Unrolling of the surface of the oblique cone. 

 

3.2.3.7. Developing the surface of the tangential helicoid 

Due to its regularity, the calculation of the unrolling of the surface of the tangential helicoid is 

also relatively simple, as illustrated in the figure bellow. 



38 
 

 

figure 51: Developing the tangential helicoid. 

3.2.4. Twisted surfaces 

A ruled surface is not developable if two infinitely close generatrices do not intersect. This 

condition is generally met when the surface is defined by any three directrices. However, there 

are specific positions that the directrices may assume that do not allow the generation of any 

ruled surface or where it degenerates into a developable surface. 

 

figure 52: Generation of a non-developable ruled surface. 

The prerequisite for straight lines 1g , 2g , 
ng to define a ruled surface is that they are tangent 

to the directrix surfaces   ,    and    simultaneously. That is, the surface    must be 

simultaneously tangent to the surfaces   ,    and   , along the lines  a ,  b  and  c , and 

respectively. 
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The set of lines 1g , 2g , 
ng , is called the GENERATRIX SYSTEM. 

If one of the directrix surfaces is replaced by a directrix line, then the generatrices must 

intersect it. 

If the surface    has only one generatrix system 1g , 2g , 
ng , then it is said to be SIMPLY 

RULED. 

If the surface    has two generatrix systems 1g , 2g , 
ng  and 1j , 2j , 

nj , then it is said to be 

DOUBLY RULED. 

When a surface is doubly ruled, all generatrices in one system intersect all generatrices in the 

other system. 

If a directrix is improper (located at infinity) this means that all generatrices 1g , 2g , 
ng  are 

parallel to one orientation. In this case the surface is said to be of DIRECTOR PLAN. 

If a curved directrix is improper (located at infinity), this is to say that all the generatrices 1g , 

2g , 
ng  are parallel to the generatrices 1d , 2d , 

nd  of a conical surface. In this case, the 

surface is said to be of DIRECTOR CONE. 

However, it should be noted that even if the surface is defined by 3 directrices, it will 

necessarily have the property of being of director plane or of director cone, since all lines have 

improper points. In any case, in terms of classification as to the directrix, it is necessary to 

distinguish between those previously referred and the ORDINARY ones. 

Therefore, the following table of classification of non-developable ruled surfaces defined by 

three directrices is given. 
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TYPE DIRECTRICES exemplos 

O
R

D
IN

A
R

Y 

R R R Scalene ruled hyperboloid; One sheet revolution hyperboloid 

R R C  

R C C Skewed arc surfaces (cow’s horn; “arriere-voussure”) 

C C C  

R R S  

R C S  

C C S  

R S S  

C S S  

S S S  

O
F 

D
IR

EC
TO

R
 

P
LA

N
E 

R R R Hyperbolic Paraboloid 

R R C Conoid surfaces; Helical surfaces 

R C C Cylindroid surfaces 

R R S Conoid surfaces with a core 

R C S Cylindroid surfaces with a core; Helical Surfaces with a core 

R S S Two-core cylindroid surfaces 

O
F 

D
IR

EC
TO

R
 

C
O

N
E 

C R R Tetrahedroid 

C C R Helical surfaces 

C C C One sheet revolution hyperboloid 

C R S  

C C S Helical Surfaces with a core 

C S S  

Table 2: Non-developable ruled surfaces classification. 

3.2.4.1. One sheet hyperboloid of revolution 

The one sheet hyperboloid of revolution accumulates the double condition of being surface of 

revolution and a ruled surface. Indeed, the same surface can be generated by rotating a 

hyperbola or by rotating a straight line skewed to the axis. 

 

figure 53: One sheet hyperbolid of revolution generated by the rotation of a straight line. 
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figure 54: Director cone and assimptotic cone of the one sheet hyperboloid of revolution. 

One of the interesting properties of the one sheet hyperboloid of revolution is that its 

generatrices are parallel to those of a family of conical surfaces of revolution, the so-called 

director cones. 

 

figure 55: Elliptical section on the one sheet revolution hyperboloid. 

The intersections that can be produced on this surface are the same as those that can be 

produced on a conical surface of revolution, that is, they are conical lines. Planes with a certain 

orientation produce intersections of the same type as those produced in the director cones. 
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figure 56: Parabolic and hyperbolic sections of the one sheet hyperbolid of revolution. 

 

figure 57: The one sheet hyperbolid of revolution as a doubly ruled surface. 

An interesting property of this surface is that it is doubly ruled, that is, the same surface can be 

generated in two different ways by rotating a line. Thus, this surface admits two generatrix 

systems, or in other words, the surface can be designed as a network of intersecting straight 

lines in space. 



43 
 

3.2.4.2. Scalene ruled hyperboloid 

Scalene ruled hyperboloid can be obtained from the above by an affine transformation and 

enjoys properties very similar to that.  

 

figure 58: One sheet hyperboloid of revolution (left) versus Scalene ruled hyperboloid (right). 

Another way to generate scalene ruled hyperboloid is as illustrated in the following figure. Of 

any three skew lines (directrices), the surface is generated by the movement of a fourth line 

(generatrix) that moves in space supported by those three. The generatrices of this surface can 

easily be obtained by intersecting a plane beam based on one directrix, with the other two 

directrices. 

 

figure 59: Definition of the scalene ruled hyperboloid by three skewed directrices. 
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3.2.4.3. Hyperbolic paraboloid  

Hyperbolic paraboloid can also be generated in several different ways. The following figure 

illustrates its generation by displacing a parabola (which preserves orientation) supported by 

another parabola. 

 

figure 60: Generating a hyperbolic paraboloid moving a parabola guided by another parabola. 

 

figure 61: The hyperbolic paraboloid as a doubly curved surface. 
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It is also a doubly ruled surface. That is, it can also be generated in two distinct ways by the 

movement of a line in space supported on three skewed lines. Although in this case one of the 

straight lines is improper. This means, in practice, that the generatrix moves by remaining 

supported by two skewed directrices and maintaining parallelism to a plan (plan orientation), 

called the director plan. Given the properties described, it appears that the hyperbolic 

paraboloid admits two orientations of director planes. 

 

figure 62: The hyperbolic paraboloid; generation with straight lines; director planes; divergence point. 

The simplest way to define a hyperbolic paraboloid is through a skewed quadrangle. The 

directions of two opposite sides define the orientation of the director plane of that family of 

generatrices, and the directions on the other two sides define the orientation of the director 

plane of the other family of generatrices. 
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figure 63: Definiton of the scalene hyperbolic parabolid defined by three skewed straight lines. 

To define the hyperbolic paraboloid given three generatrices of the same family, the condition 

must be that the directions of these lines are contained in a single orientation (the orientation 

of the director plane of that family of generatrices). 

 

figure 64: Isosceles hyperbolic paraboloid (left) and scalene hyperbolic parabolid (right). 
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The hyperbolic paraboloid admits two types of conic sections. If a plane contains the direction 

common to both director planes, then the intersection is a parabola. Otherwise, it is 

hyperbola. 

 

figure 65: Planar sections in the hyperbolic parabolid; parabola (left) and hyperbola (right). 

Of course, we are not considering here the cases of tangent planes, where the sections 

degenerate into a pair of straight lines, which intersect at the point of tangency of the plane 

with the surface. 

3.2.4.4. Ruled helicoids 

Ruled helicoids are a family of non-developable (in general) ruled surfaces, which are guided 

by a cylindrical helix. They may be of director cone or director plan. They may have a central 

core or be axial. 



48 
 

 

figure 66: Ruled helical surfaces generation. 

When the helicoid is said to be axial, it means that the generatrices (considered extendible) are 

intersection the axis. In the other situation, the generatrices are tangent to the surface of a 

coaxial revolution cylinder with the helicoid. When they are of director plane, the generatrices 

retain a direction contained in an orientation, generally orthogonal to the surface axis. When 

they are of director cone, they maintain a constant angle with the axis, with the particularity 

that this angle is never 90° (this would be the case where there is a director plane). 

 

figure 67: Ruled helical surfaces (orthogonal views). 
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figure 68: Ruled helical surfaces (perspective views). 

3.2.4.5. Conoid surfaces 

Conoid surfaces can be generated by displacing a straight line (generatrix) that rests on 

another straight line and a curve, maintaining parallelism with respect to a plane orientation. 

That is, it is a simply ruled surface of director plane. 

 

figure 69: Generation of a conoid surface. 
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figure 70: Straight conoid with circumferencial directrix. 

3.2.4.6. Cylindroid surfaces 

The cylindroid surface is like the previous one, but the generatrix rests on two curves. It is also 

a simply ruled surface. 

 

figure 71: Generation of the cylindroid. 
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figure 72: Cylindroid with two circumferencial directrices. 

3.2.4.7. Skewed arc surfaces 

Skewed arc surfaces are generated by the lines defined by successive intersections of a plane 

beam relative to two curves or one curve and one line. The basis of the beam is one of the 

directrices of the surface. 

 

figure 73: Generation of the skewed arc surfaces. 
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figure 74: The cow’s horn, example of a skewed arc surface. 

3.2.4.8. The tangent plane to a simply ruled surface 

On a non-developable simply ruled surface   , the plane  , tangent to    at a point T , 

contains the straight generatrix g  passing through it. This plane intersects the surface along 

the straight line g  and along a line  a . The plane   contains the line t  tangent to the line 

 a  at the point T . 

 

figure 75: The tangent plane to a simply ruled surface. 

3.2.4.9. The tangent plane to a doubly ruled surface  

On a doubly ruled surface,   ,  the plane  , tangent to    at a point T , is defined by the 

two straight generatrices g  and j , which are incident on it. This is the case of hyperbolic 

paraboloid, scalene hyperboloid, and the one sheet hyperboloid of revolution. 
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figure 76: The tangent plane to a doubly curved surface. 

3.2.4.10. Bundle of tangent planes along a generatrix  

Consider the ruled warped surface    defined by the directrices  a ,  b  and  c . 

Let g  be a straight generatrix of the surface   , containing the points A , B  and C , and 

belonging to the directrices  a ,  b  and  c , respectively. 

The planes A , B  and 
C , tangents to the surface    at the points A , B  and C , 

respectively, are defined by the generatrix g  and the lines At , Bt  and 
Ct , respectively tangent  

to  a at A , to  b  at B  and to  c  at C .  

 

figure 77: Bundle of tangent planes along a generatrix. 
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figure 78: Definition of a doubly ruled surface tangent to a simply ruled surface along a generatrix.  

Following what was described in figure 77. 

If you intersect the plane A with any plane A  (passing through the point A ), the plane B  

with any plane B   (passing through the point B ), and the plane 
C  with any plane 

C  

(passing through the point C ), you get the lines Aj , Bj  and 
Cj , respectively, and tangent to 

the ruled warped surface    at the points A , B  and C , and respectively. 

The three straight lines define a scalene hyperboloid tangent to the surface    along the 

generatrix g . 

As the planes A , B  and 
C , and can assume a multitude of orientations, there is an 

infinitude of scalene hyperboloids tangent with the surface    along the generatrix g . 

If the three planes A , B  and 
C  are parallel to each other, the tangent surface is a 

hyperbolic paraboloid. 

Once again, there is an infinitude of hyperbolic paraboloids tangent to the surface     along 

the generatrix g . 

Determining the plane T , tangent to the surface    at any point T  of any generatrix g , 

consists of determining the generatrix Tj  (of the system opposite to g , and concurrent with 

g at the point T ) of the scalene hyperboloid or the hyperbolic paraboloid, as the case may be. 
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3.2.4.11. Tangent planes to the one sheet hyperboloid of revolution  

Since the surface of the hyperboloid of revolution is doubly ruled, the tangent plane is defined 

by the two generatrices of opposite systems that intersect at the point of tangency. 

 

figure 79: Tangent plane driven by a surface point. 

However, as with any surface, the plane can be defined by a pair of lines tangent to two 

intersecting sections at the point of tangency. 

 

figure 80: Tangent plane driven by a point exterior to the surface. 

Given a point exterior to the surface, it is possible to conduct a multitude of tangent planes to 

the surface. One way to restrict the number of solutions is to select a surface line (in principle 

straight) on which the tangent plane is determined. Thus, the number of solutions is restricted 

to one or two in most cases. 
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figure 81: Tangent plane parallel to a given line. 

To drive the tangent plane parallel to a straight line implies to drive by any one of the 

generatrices, from one of the systems, an intersecting straight line with the given direction. 

The point of tangency is determined by identifying the generatrix of the other system 

contained in the plane. 

 

figure 82: Tangent plane parallel to a given plane. 

To check whether it is possible to conduct a tangent plane parallel to a given plane, check 

whether there are directions in the director cone that are common to the plane. If so, the 

tangent plane is defined by the two generatrices with those directions, that is, the generatrices 

parallel to the given plane. 
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3.2.4.12. Tangent planes to the hyperbolic paraboloid  

 

figure 83: Tangent plane driven by a surface point (left) and driven by an exterior point (right). 

Also, with the hyperbolic paraboloid, since it is a doubly ruled surface, the tangent plane at a 

point on the surface is defined by the two opposite-system generatrices that intersect at the 

point of tangency. 

 

figure 84: Tangent plane parallel to a given line (left) and parallel to a given plane (right). 
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Determining the tangent plane parallel to a straight line or parallel to a given plane is all like 

what was said for the ruled hyperboloid. The difference now is the need to refer to the 

director plan instead of the director cone. 

3.2.4.13. Tangent planes to the conoid  

As stated in 3.2.4.8, the plane tangent to a simply ruled surface, driven by a point on the 

surface, contains the straight generatrix of the surface passing through the point. A further line 

may be obtained by passing at the point a tangent straight-line tangent to a surface that also 

passes through the tangency point. Or, it can be determined by trying to drive that line as a 

generatrix of a doubly-ruled surface tangent with the initial surface, since as already 

mentioned, two tangent surfaces share the same tangent planes along the line of tangency. 

 

figure 85: Tangent plane driven by a surface point. 

3.2.4.14. Tangent planes to the cow’s horn surface  

This surface appears to us here out of curiosity. The way in which it is treated is in all respects 

identical to the previous case. 
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figure 86: Tangent plane driven by a surface point. 

3.2.4.15. Tangency between surfaces as a composition tool 

It is possible to move smoothly from one surface to another if they are tangent to each other, 

that is, if along the line common to both, the tangent planes are the same. In the two figures 

given below, there are tangencies between various surfaces and the hyperbolic paraboloid. 

 

figure 87: Tangency between surfaces. 
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figure 88: Tangency between surfaces. 

3.2.4.16. NURBS lines and surfaces in space 

Everything that has been said about Bezier, B-splines, and NURBS lines in the plane can easily 

be expanded into three-dimensional space. For example, the control polygon line segments of 

a Bezier curve of degree three do not all have to be in the same plane. And the same applies to 

B-Splines and NURBS. This is a way of generalizing the representation of curves in space. 

These curves, whether flat or not, spatially placed can serve as directrices for the generation of 

NURBS surfaces. 

In the previous point, a whole series of surfaces has been discriminated down. Interestingly, 

you will probably not find many of them as geometric primitives in many 3D modelling tools. 

One way of representing those surfaces is by approximation through NURBS surfaces. Note, 

however, that NURBS surfaces, with the appropriate weights assigned to the control points, 

make it possible to accurately (geometrically) represent spheres, paraboloids, etc. The 

following two figures show the effect of changing the weight of the surface control network 

vertices. 

 

figure 89: Three control networks. 
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figure 90: The effect of changing the weight at the vertices of the control network. 

In relation to the central figure (where a spherical surface is represented) the weights relative 

to the control cube vertices were increased (left surface) and the weights of the same vertices 

decreased (right surface). This is possible because the surface is represented as NURBS. 

Generally, a NURBS surface is defined by a grid of control points, and their associated weights, 

and by the degree of their generatrices in the two parametric directions of the surface. These 

two parametric directions, usually noted by the letters U and V, can be visually represented by 

a grid of ISOPARAMETRIC curves on the surface. 

 

figure 91: NURBS surface and the respective control network vertices. 

An isoparametric curve is a curve that, in one of the parametric directions, corresponds to a 

constant value of a parameter in parametric space (which is distinct from geometric space). 
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figure 92: Using lines with different degrees as the directrices of NURBS surfaces. 

If a NURBS surface is generated by curves of different degrees in one of the parametric 

directions, the highest degree of surface generation in that direction is generally assumed. In 

the two previous figures, this fact is illustrated. The input lines for the NURBS generation were 

degree 2 and 4 in one of the parametric directions, and 3 and 5 in the other parametric 

direction. Thus, in the first direction, degree 4 was assumed for the first parametric direction 

and degree 5 for the other parametric direction. This is because it is possible to increase the 

degree of a curve without changing its shape, but not the other way around. 

3.3. Different logics to generate surfaces 

Modelling logics can vary. At this point we present some modelling logics implemented in 

Rhinoceros software. However, other applications may implement other logics. A cross reading 

of this point is recommended with that given in the tables on pages 26 and 40 for surface 

classification. The various logics contain variants. Here only the general ideas are presented 

trying to convey how the functions implemented in that application can be used directly for 

the surface representation. 

3.3.1. Polygons 

Polygons can be generated in various ways. A rectangle can be drawn using the Plane function, 

any n-sided polygon can be generated by defining the planar curves that delimit it (funtion 

PlanarSrf). 

3.3.2. Surfaces of revolution (Revolve function) 

About this type of surfaces, remember what was said in paragraph 3.2.2. 
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figure 93: Surface modelled in Rhinoceros with the Revolve function. 

3.3.3. Other “revolution” surfaces (RailRevolve function) 

These surfaces are based on the idea of rotation, but they are not truly surfaces of revolution. 

The generatrix rotates around an axis, however it deforms in this rotation as a function of the 

distances of the points of a new line (rail) in relation to the axis. These successive deformations 

are, in practice, affine transformations of the generatrix in orthogonal axis directions. 

 

figure 94: Surface modelled in Rhinoceros with the RailRevolve function. 
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3.3.4. Translational surfaces (Sweep1 function)  

These surfaces are based on the displacement of the generating line along a guideline with the 

restriction of maintaining the angle between them throughout the movement. 

 

figure 95: Surface modelled in Rhinoceros with the Sweep1 function. 

3.3.5. Translational surfaces (Sweep2 function)  

In this example (figure bellow) we have been given two horizontal guidelines (rails) along 

which the generatrix has moved, and the extreme positions of a generatrix, which being 

different, assume that the generatrix is deformable. The generatrix begins by being a 

semicircle arc to end in a semi-ellipse arc. In the intermediate positions, the ratio between 

minor axis and major axis varies between those of the two extremes. 

 

figure 96: Surface modelled in Rhinoceros with the Sweep2 function. 
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You can define more than two positions (and geometries) for the generatrix that will condition 

the surface generation to suit it. 

3.3.6. Extrusion surfaces (Extrude functions) 

The basic idea of an extrusion consists in the definition of a generatrix that moves according to 

a guideline (directrix). In this displacement the generatrix maintains the orientation. 

 

figure 97: Extrusion surface modelled in Rhinoceros. 

There are, however, other types of extrusion, and the generatrix can change its size and 

proportions. 

3.3.7. Surface generated by interpolating a sequence of curves (Loft function) 

Considering several spatially given curves in a given sequence, the surface is generated by 

interpolation and fitting them according to specific criteria. 

 

figure 98: Loft between a sequence of circles modelled in Rhinoceros. 
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3.3.8. Interpolating and fitting a spatial network of curves (NetworkSrt function) 

As in the previous case, the surface is generated by interpolation and fitting. However, in this 

case, a network of space curves is given that inform about the "skeleton" of the surface. 

 

figure 99: Surface based in a network of curves modelled in Rhinoceros. 

An identical way to generate surfaces is by defining a spatial point network (SrtPtGrid 

function). Each line of points corresponds in practice to a surface generating line in one of its 

parametric directions. 

3.3.9. Generating a surface given four corner points (SrfPt function) 

The conceptual surface that is generated this way is the hyperbolic paraboloid. 

 

figure 100: Hyperbolic paraboloid modelled in Rhinoceros. 
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3.3.10. Generating a surface given the edge curves (EdgeSrf function) 

In this case, the surface can be defined by 2, 3 or 4 edge lines. Ideally these should be 

boundary lines for better result control. In this case, the lines can also be other surface 

boundaries. And so, the tangency to these surfaces can be controlled. 

 

figure 101: Surface modelled in Rhinoceros given 4 edge lines. 

3.3.11. Surface passing and fitting a set of points, lines and meshes (Patch function) 

In the example bellow, the surface was generated patching two horizontal rectangles at 

different heights and two points at different heights also. As it can be seen, the surface doesn´t 

perfectly fit the given elements. 

 

figure 102: Patch surface. 

3.3.12. Surface generated by draping over given surfaces (Drape function) 

The idea for generating this type of surface is to cover a set of surfaces given with a new 

surface as if they were covered with a cloth or elastic net. It is important to note that in 
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Rhinoceros software this type of surface is always generated considering the current view. It is 

also important to note that surface depth control is a function of the nearest and the furthest 

point from the camera in the current view. 

 

figure 103: Surface draped over a set of spheres. 

3.3.13. Complex surfaces and composition of surfaces 

With the resources given by computation, almost any surfaces can be represented. The 

following figure illustrates how, by properly choosing lines and points as guiding elements, we 

can represent a wide range of complex surfaces articulated to generate highly elaborated 

models. 

 

figure 104: A camera modelled in Rhinoceros (in http://www.3dprinter.net/rhino-3d-review). 
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3.4. Lines from surfaces 

If, on the one hand, lines are what give rise to surfaces through their movement in space, it is 

also a fact that they can be generated from surfaces. 

From a limited surface these limits can be extracted. From a NURBS surface, isoparametric 

lines can be extracted. Lines can be mapped to surfaces through different types of 

transformation (parallel projection, normal surface projection, parametric matching, etc.). 

But the most popular way to generate lines across surfaces is through intersection, as 

illustrated in the following figure. 

 

figure 105: A line generated at the intersection of two surfaces. 

4. SOLIDS 

Any surface configuration in space enclosing a volume can be conceptually associated with a 

solid. The edges of this solid (not necessarily straight) will be the intersecting lines of the 

various surfaces, and these lines will delimit the faces of the solid (not necessarily planar). 

4.1. Boolean operations between solids 

Boolean operations are of three types: a) union, b) subtraction, and c) intersection. 

The union operation corresponds to considering everything that is common and not common 

to base solids. 

The subtraction operation corresponds to the difference between the base solids, that is, what 

of the various base solids is common to the first, is subtracted from it. 

The intersection operation corresponds to considering only the volume portion common to the 

base solids. 
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figure 106: Intersection types 

In all cases, the edges of the final solids always result from the intersection of the base solid 

surfaces. 

In addition to this classification of intersections, it is possible to consider others, as regards the 

characteristics of intersection lines between surfaces. We are particularly interested in 

highlighting a situation called PENETRATION with the intersection line having a singular point, 

as its control is more demanding. The condition that must be met for a double point on the 

intersection line between two surfaces is that there is a tangent plane common to both 

surfaces at that point. 

5. PARAMETRIC MODELING 

Parametric modelling consists in modelling objects based in parameters that are used to define 

them. Usually, all geometric modelling tools are parametric in the sense that, for defining an 

object, for example a cylinder, one must assign some values (radius of the base, height, 

direction of the generatrices) to parameters to instantiate the object. However, in this section, 

we add the requirement that those vales can be changed at will. In the given example (figure 

below), one can change the radius, the height, and the direction of the generatrices of the 

cylinder giving rise to different possibilities. In this section the examples are modelled with 

Grasshopper, a Rhinoceros plugin. 
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figure 107: Different instances of a cylinder by changing parameters 

Different geometric primitives will have different parameters. But even the same geometric 

primitive can be modelled considering different defining parameters. For example, the same 

cylinder can be modelled considering the coordinates of the bases and the radius as 

parameters (figure below). 

 

figure 108: A different approach to the parametric modeling of the cylinder 

There is no right or wrong approach when defining parameters. But there could be 

combinations that are best suited to specific purposes. It is up to the modeler (the architect, 

the engineer, the designer) to set up the configurations that better solve the modelling 

problem in hands. 

 

 

 


