FAUL | 2018/2019 | MGG | 1º semestre

Teacher: Luís Mateus

Week 1	• Presentation of the course, URL and syllabus.
21/Set – E & PL	• Basic concepts about surfaces, their generation and classification.
27/Set – F & G	Genesis
	- Point, Line, Surface, Volume
	Lines
	- Tangent, Normal, bi-Normal, Curvature, Radius of curvature, Osculating circle,
	Torsion
	Surfaces
	Tangent plan, normal line, normal plan, normal section, main normal planes,
	main normal sections, Mean curvature, gaussian curvature
	Geometric operations
	Geometric transformations: Euclidean, affine, projective, topological, "baker"
	transformations
	Intersections and tangencies between surfaces
	Boolean operations
	Surfaces classification criteria
	Curvature
	Order (quadric, cubic, quartic,)
	Type of generatrix (ruled / Curved; developable / non-developable)
	Type of directrix (helicoids,)
	Movement of the generatrix (translation, revolution, elliptical revolution, sweep)
	Topology (open / closed, equivalent to sphere, equivalent to torus, equivalent to
	circle, equivalent to an annulus,)
	Types of surfaces (classes)
	Polyhedral (platonic solids, Archimedes solids)
	Quadric
	Revolution
	Curved
	Ruled developable
	Ruled non-developable
	NURBS
	• Exercise 1 (weight: 1)
	Consider the shape described in the class through measures and drawings (7.5cm
	X 7.5cm 10cm X 5cm 2.5cm). Build a physical model of that shape and bring it
	next class. Document the process with drawings and photos.
	next class. Bocument the process with drawings and photos.
	• Exercise 2 (weight: 5)
	- From each of the previously defined surface classes, model two surfaces. Please
	notice that there are surfaces that can be included in more than one class. So,
	don't repeat surfaces between classes.
	don trepeut surfaces between classes.

	 For each surface perform an analysis of the curvature (mean and gaussian) using software Rhinoceros. Do a report, in PDF, illustrating and describing the modelling process and the results obtained. The delivery of the exercise (file *.3dm + *.pdf in a zipped folder named XXXXXX_2.zip where XXXXXX corresponds to your student number) should be done via <u>Wetransfer</u>: > until the 24h of 21/10/2018.
Week 2 28/Set – E & PL 4/Out – F & G	 Group model (exercise 1). Presentation and preparation of Rhinoceros environment (units, tolerances, visual modes, basic commands) * Development of exercise 2
	 * Rhinoceros 5 or 6 can be downloaded and installed from <u>https://www.rhino3d.com/download</u> The trial version works for 90 days. It should be enough for the semester. After 90 days it still works but doesn't save.