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Preface 
 

Essential Mathematics for Computational Design introduces design professionals 
to foundation mathematical concepts that are necessary for effective development 
of computational methods for 3D modeling and computer graphics. This is not 
meant to be a complete and comprehensive resource, but rather an overview of 
the basic and most commonly used concepts. 

 

The material is directed towards designers who have little or no background in 
mathematics beyond high school. All concepts are explained visually using 
Grasshopper® (GH), the generative modeling environment for Rhinoceros® (Rhino). 
For more information, go to www.rhino3d.com and www.grasshopper3d.com.  

 

The content is divided into three parts. The first discusses vector math including 
vector representation, vector operation, and line and plane equations. The second 
part reviews matrix operations and transformations. The third part includes a 
general review of parametric curves with special focus on NURBS curves and the 
concepts of continuity and curvature.   It also quickly reviews NURBS surfaces and 
polysurfaces. 

 

I would like to acknowledge the excellent and thorough technical review of Dr. 
Greg Arden of Robert McNeel and Associates.  His valuable comments were 
instrumental to produce this second edition.  I would also like to acknowledge Ms. 
Margaret Becker of Robert McNeel and Associates for reviewing the technical 
writing and formatting the document. Finally, I’d like to point out that the material in 
this book is based partly on a workshop I held at the University of Texas at 
Arlington for the Tex-Fab event February, 2010. 

 

Rajaa Issa 
Robert McNeel & Associates 
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1 Vector Mathematics 

Vector representation 
Vectors indicate a quantity that has "direction" and "magnitude" such as velocity or 
force. Vectors in 2D coordinate systems are represented with two real numbers in the 
form:  

 v = <a1, a2> 

Similarly, in 3-D coordinate system, vectors are represented by three real numbers 
and would look like:  

 v = <a1, a2, a3> 

We will use a lower case bold letters to represent vectors.  Also vector components 
are enclosed by angle brackets. Points will use upper case letters.  Points’ coordinates 
will always be enclosed by round brackets. 

Using a coordinate system and any set of anchor points in that system, we can 
represent or visualize these vectors using a line-segment representation. We usually 
put an arrowhead to show the direction of vectors. 

For example, if we have a vector that has a direction parallel to the x-axis of a given 
3-D coordinate system and a magnitude equal to 5.18 units, then we can write the 
vector as follows:  

 v = <5.18, 0, 0>  

To represent that vector, we need an anchor point in the coordinate system. For 
example, all of the red line segments in the following figure are equal representations 
of the same vector. 

 
Figure (1): Vector representation in the 3D coordinate system. 1: Grasshopper unit x-axis component. 2: 

Grasshopper number slider component. 3: Grasshopper point components that is set to reference multiple 
points in Rhino (in this case referencing v1, v2, v3 and v4). 4: Grasshopper vector display component 

Given a 3-D vector v = < a1, a2, a3 >, all vector components a1, a2, a3 
are real numbers. Also ALL line segments from a point A(x,y,z) to point 
B(x+a1, y+a2, z+a3) are EQUIVALENT representation of vector v. 

So, how do we define the end points of a line segment that represent a given vector? 

Let us define an anchor point (P0) using Grasshopper “x,y,z point” component: 

 P0 = (1,2,3) 
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And a vector using Grasshopper xyz vector component that takes as an input three 
real numbers: 

 v = <2,2,2> 

The tip point (P1) of the vector is calculated by adding the corresponding components 
from anchor point and vector v: 

 P1 = (1+2, 2+2, 3+2) = (3,4,5) 

The following definition displays this vector using the Grasshopper vector display 
component, and marks the end of the displayed vector that expectantly coincides with 
point P1: 

 
Figure (2): Relationship between a vector, vector anchor point and the point coinciding with vector tip 

location 

Position vector 

There is one special vector representation that uses the origin P0 (0,0,0) as the vector 
anchor point. The position vector v = <a1,a2,a3> is represented with a line segment 
between two points P0 and P1 so that: 

 P0 = (0,0,0) 
 P1 = (a1,a2,a3) 

A position vector for a given vector v= < a1, a2, a3 > is a special line 
segment representation from the origin_point(0,0,0) to point (a1, a2, a3). 

It is very important not to confuse vectors with points that have equivalent 
components.  They are two very different concepts. In the following Grasshopper 
definition, point P1 coordinates are equal to vector components.  
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Figure (3): Position vector 

Vector operations 

Vector addition 

We add vectors by adding corresponding components. That is, if we have two vectors, 
a and b, the sum a+b is a vector that is calculated as follows: 

 a = <a1, a2, a3> 
 b = <b1, b2, b3> 
 a+b = <a1+b1, a2+b2, a3+b3> 

For example, if we have a<1, 2, 0> and b<4, 1, 4> the sum a+b=<5, 3, 4> is shown in 
the following: 

 
The following Grasshopper definition shows how to create the a+b vector by adding 
corresponding components of the two input vectors a and b. 
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Figure (4): Adding vectors through adding their corresponding components 

The resulting vector is the same as that resulting from using Grasshopper's built-in 
addition component: 

 
Figure (5): Adding vectors using GH vector addition component 

Add two vectors by adding their corresponding components. 

Vector addition is also useful for finding the average direction of multiple vectors. In 
this case, we usually use same-length vectors. Here is an example that shows the 
difference between using same-length vectors and different-length vectors on the 
resulting vector addition: 

 

 
Figure (6): Adding vectors to find average direction 

Input vectors are not likely to be same length.  In order to find average direction, you 
need to use the “unit vector” of input vectors.  As we will see later, a unit vector is a 
vector of that has a magnitude equal to one.  Here is an example that solves adding 
vectors of different lengths to find average directions in Grasshopper. 
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Figure (7): Use unit vectors to find average direction of two or more vectors 

Vector length 

We will use |a| to notate the length of a given vector “a”.  The magnitude or length of 
a vector a = <a1, a2, a3> is calculated by   

 |a| = sqrt(a12 + a22 +a32)  

Here is an example of calculating vector magnitude using Grasshopper function 
component: 

 
Figure (8): Calculate vector length 

Note that Grasshopper vector component has an output “L” that represents the vector 
magnitude.  Using the same vector in the above example, you’ll notice that length is 
equal. 

 
Figure (9): Vector length as a parameter is GH vector component 

Vector scalar operation 

Given vector a = <a1, a2, a3>, and factor t = some real number,  
 a*t = <a1*t, a2*t, a3*t > 

Here is the equation implemented in Grasshopper: 

 
Figure (10): Vector scalar operation 
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Unit vector 

A unit vector is a vector with a magnitude equal to one unit. Unit vectors are commonly 
used to compare directions of vectors.  

A vector is called a unit vector when its length or magnitude is equal to 
one unit. 

Vector properties 

There are eight properties of vectors. If a, b and c are vectors and s and t are scalar, 
then: 

1. a + b = b + a 

2. a + 0 = a 

3. s(a+b) = sa + sb 

4. st(a) = s(ta) 

5. a+(b + c) = (a+b) + c 

6. a + (-a) = 0 

7. (s + t)a = sa + ta 

8. 1 * a = a 

Vector dot product 

The dot product of two vectors is defined as follows: 

Given: 

 vector a = <a1, a2, a3> 

 vector b = <b1, b2, b3> 

 a.b = a1*b1 + a2*b2 + a3*b3 

In the following illustrations, we will show that Grasshopper vector dot product 
component yields the same result as the above a.b equation: 

 
Figure (11): The dot product of two vectors as a sum of multiplying corresponding components 

Grasshopper has a built-in vector dot product component as shown in the following 
illustration: 
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Figure (12): The dot product of two vectors using GH vector dot product component 

When calculating the dot product of two unit vectors, the result is always between 
-1 and +1. 

The dot product of a vector with itself is that vector’s length to the power of two: 

 a.a = |a|2 

Proof: 

If vector a = <a1, a2, a3> then from the definition of dot product of two vectors: 

 a.a = a1*a1 + a2*a2 +a3*a3 

or 

 a.a = a12 + a22 +a32 

Since we know that: 

 |a| = sqrt(a12 + a22 +a32) 

Therefore, 

 a.a = |a|2 

Here is a Grasshopper sample to demonstrate this property comparing result using dot 
product component with multiplying the vector length by itself: 

 
Figure (13): The dot product of a vector with itself 

Dot product and angle between vectors 

One important theorem for vector dot product is: 

 a.b = |a||b|cos(ө), or 

 cos(ө) = a.b / (|a||b|), 

where “ө”  is the angle included between the position vectors. 

And if vectors a and b are unit vectors, we can simply say: 

 cos(ө) = a.b 
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The dot product of two unit vectors equals the cosine of the angle 
between them 

Proof: 

From the law of cosines on triangle ABC 

 |AB|2 = |CA|2 + |CB|2 - 2|CA||CB|cos(ө) 
or: 
 |a-b|2 = |a|2 + |b|2 - 2|a||b|cos(ө) --- (1) 

 

|AB|2 is the same as |a-b|2, so we can 
say: 

 |a-b|2 = {a-b) . (a-b) 
  = a.a - a.b -b.a + b.b 
  = |a|2 - 2a.b +|b|2   --- (2) 

 

from (1) & (2) 

 |a|2 - 2a.b +|b|2 = |a|2 + |b|2 -
2|a||b|cos(ө)  

then: 

 2a.b = 2|a||b|cos(ө) 

or: 

 cos(ө) = a.b / (|a||b|) 

 

 

Vectors a and b are orthogonal if, and only if, a.b = 0. 

But what is the dot product of two unit vectors if they are parallel? 

In the most practical way, you can think of the dot product of two vectors to be the 
projection length of one vector on the other.  

Here is a demonstration of this concept using Grasshopper.  In the first figure, we 
calculate the dot product of the x-axis unit vector with an input vector “v”.  In the 
second figure, we project the end point of the position vector “v” onto a line along the 
x-axis and calculate the distance from origin to that projection point.  You’ll notice that 
the dot product and projection length are equal. 
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Figure (14): The dot product and angle between vectors 

Dot product properties 

If a, b and c are vectors and s is scalar then: 

1. a . a = | a |2 

2. a . (b + c) = a . b + a . c 

3. 0 . a = 0 

4. a . b = b . a 

5. (sa) . b = s(a . b) = a . (sb) 

Vector cross product 

The cross product of two 3d-vectors produces a third 3d-vector that is orthogonal to 
both input vectors. Given: 

 a = <a1, a2, a3> 
 b = <b1, b2, b3> 

The cross product a X b is defined using determinants. Here is a quick illustration of 
how to calculate a determinant.  We use the standard basis vectors i=<1,0,0>, 
j=<0,1,0> and k=<0,0,1> 

 
a x b = i(a2*b3) + j(a3*b1) + k(a1*b2) - k(a2*b1) - i(a3*b2) - j(a1*b3) 
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a x b = <a2*b3 – a3*b2, a3*b1 - a1*b3, a1*b2 - a2*b1 > 

 

This is the Grasshopper definition for evaluating the cross product using these 
expressions and comparing it with the vector cross product built-in component. They 
both yield same result. 

 
Figure (15): Calculating the cross product of two vectors 

 
Figure (16): Calculating the cross product of two vectors using GH cross product component 

The vector a x b is orthogonal to both a and b 

Theorem 

For any pair of 3d vectors a and b 

 |a x b| = |a||b|sin(ө), 

Where “ө” is the angle included between the position vectors of a and b. 

Or if a and b are unit vectors, then the length of their cross product equals the sine of 
the angle between them.  In other words: 

 |a x b| = sin(ө) 
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This is an example to calculate the length of the cross product of two vectors using GH 
built-in cross product component and compare it to the calculation using the equation 
mentioned above. As expected, they both yield same result. 

 
Figure (17): Calculating the length of cross product vector using a function and also using GH built-in 

component for vectors cross product 

In determining the cross product, the order of operands is important. For example: 

 a = <1, 0, 0> 
 b = <0, 1, 0> 
 a x b = <0, 0, 1> 
 b x a = <0, 0, -1> 

 

In Rhino's right-handed system, the direction of a X b is given by the right-hand 
rule (where a = index finger, b = middle finger, and result = thumb). 
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Vectors a and b are parallel if, and only if, a x b = 0 

Cross product properties 

If a, b, and c are vectors and s is scalar then: 

1. a X b = -b X a 

2. (sa) X b = s(a X b) = a X (sb) 

3. a X (b + c) = a X b + a X c 

4. (a + b) X c = a X c + b X c 

5. a . (b X c) = (a X b) . c 

6. a X (b X c) = (a . c)b – (a . b)c 

Example 

All the concepts we reviewed so far have direct application to solving geometry 
problems encountered when modeling.  For example, given a point and a surface, how 
can we determine whether the point is facing the front or back of that surface? 

Here are the steps to solve the problem: 

 

 
 

Here is the Grasshopper solution following the same steps. Note that in this case the 
dot product is greater than 0 which means the point is facing the front side of the 
surface. If the dot product were less than 0 then the point would be on the back.  

 
Figure (18): Find point location relative to surface front and back faces 
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Vector equation of line 
The vector line equation is used in 3-D modeling applications and computer graphics. 
Here is a description of that equation and how it might be used.  

 

In the figure:  

 L  = line 
 v  = line direction vector 
 P0 = line position point 
 r = r0 + a  --- (1) 
 a = t * v    --- (2) 

Therefore from 1 and 2: 

 r = r0 + t*v --- (3) 

However, we can write (3) as follows: 

 <x,y,z> = <x0,y0,z0> + <ta, tb, tc> 

 <x,y,z> = <x0+ta, y0+tb, z0+tc> 

Therefore: 

 x = x0 + ta 
 y = y0 + tb 
 z = z0 + tc 

Which is the same as: 

 P = P0 + tv 

 

 

This is a Grasshopper definition to get any point on a line: 

 
Figure (19): Find points on a line 
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Example 

In the following figure, given points P0 and P1, find mid point P. 

 

Notice that: 

 a is the position vector for point P0 
 b is the position vector for point P1 
 v is the vector going from P0 to P1 

From vector addition property: 

 a + v = b, or 
 v = b - a 

However, the line equation is: P = P0 + t*v, and since t=0.5 and v=b-a (from the 
above), then we can say: 

 P = P0 + 0.5(b-a) 

 

Use the above equation to create a Grasshopper definition: 

 
Figure (20): Find mid point between two input points 

In general, you can find any point between P0 and P1 by changing the t value between 
0 and 1. 

Vector equation of a plane 
In the figure above: 
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 P0(x0,y0,z0 ) = a given point on the plane 
 r0<x0,y0,z0> = position vector to P0 
 n<a,b,c> = normal vector of the plane 

 P(x,y,z) = arbitrary point on the plane 

 r<x,y,z> = position vector to P 

 

We know that the dot product of two orthogonal 
vectors equals 0, therefore: 

 n . (r - r0) = 0 

Or we can say: 

 <a,b,c> . <x-x0 , y-y0 , z-z0 > = 0 

Solving the dot product gives the scalar equation 
of the plane: 

 a(x-x0) + b(y-y0) + c(z-z0) = 0 

 

Example 

How can we find the plane that goes through three points using the origin point and 
plane normal? 

In order to find a plane, we need an origin and a plane normal. We have an origin 
point, which can be any of our three points, so how do we find the normal?  

We know that the cross product of two vectors is a third vector normal to both of them. 
This would be the plane normal. Hence, this is how we may solve the question using 
Grasshopper: 

 
Figure (21): Find plane that goes through three points 
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2 Matrices and Transformations 

Introduction 
Although designers might not need to use matrix mathematics directly in computational 
design, knowledge of the basics is very useful for appreciating what is happening 
behind the scene. Transformation matrices are responsible for moving, rotating, 
projecting, and scaling objects. Matrices are also used for transformations between 
coordinate systems, for example from the 3-D world coordinate to the 2-D screen 
coordinate system. 

We can define transformation as a function that takes a point (or a vector) and maps 
that point into another point (or vector). What is a matrix, and why do we need it for 
transformations? 

A matrix is a rectangular array of numbers. A matrix dimension is m-by-n where: 

 m: number of rows 
 n: number of columns 

So if we have a matrix M with two rows and tree columns, we express the dimension of 
the matrix as follows: 

 dim(M) = [2,3] 

Matrices have proven to be very a useful representation for transformations. Multiple 
transformations can be performed very quickly using this representation. The key is to 
find one format that can represent ALL transformations such as translation (move), 
rotation, and scale. 

Matrix multiplication 
Matrix multiplication is used to apply transformation to geometry. A series of 
transformation matrices is first multiplied to get a final transformation matrix that is in 
turn used for transforming geometry. Matrix multiplication is one of the frequently used 
matrix operations, so it is useful to elaborate on. 

In order to multiply two matrices, they have to matching dimensions. In other words, 
the number of columns of the first matrix must equal the number of rows of the second 
matrix. The resulting matrix has size equal to the number of rows from the first matrix 
and the number of columns from the second matrix. For example, if we have two 
matrices, M1 and M2, with dimension equal to [2x4] and [4x5] respectively, then there 
resulting multiplication matrix M1.M2 would have a dimension equal to [2x5] as shown 
in the following: 

 
 

Here are the general steps to multiply two matrices: 
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1. Make sure they match.  
That is, given two matrices of size dim(M1)=[axb], dim( M2)=[cxd], b must be 
equal to c. 

2. Find the sum of multiplying corresponding items from the first row of the left 
matrix with the first column of the right matrix to get the item at index(1,1) of the 
resulting matrix. 

3. Repeat step 2 to get all items of the resulting matrix.  
For example the sum of multiplying third row of left matrix with second column 
of right matrix yields item at index (3,2) in the resulting matrix. 

One special matrix is the identity matrix. The main property of this matrix is that if it is 
multiplied by any other matrix, it does not change its values as in the following: 
 

 1   0   0   0  2   1*2+0*3+0*1+0*1   2 
 0   1   0   0  3 =  0*2+1*3+0*1+0*1 =  3 
 0   0   1   0  1   0*2+0*3+1*1+0*1   1 
 0   0   0   1  1   0*2+0*3+0*1+1*1   1 

Affine transformations 
In this section, we will cover a special, but very common, type or transformation called 
an affine transformation. When applied to geometry affine transformations have the 
property of preserving parallel line relationships, but not length or angles. Translation 
(move), rotation, scale, and shear are affine transformations. 

Translation (move) transformation 

Moving a point from a starting position by certain vector is calculated as follows: 

P' = P + V 

Suppose: 

 P(x,y,z) was a given point 

 v<a,b,c> was a translation vector 

then: 

 P'(x) = x + a 
 P'(y) = y + b 
 P'(z) = z + c 

 

We represent a 3d-point as a 4x1 column matrix with a 1 in the last row.  This “trick” 
allows us to represent translation, and in fact any affine transformation, by matrix 
multiplication. 

The general format for a translation matrix is: 

  1   0   0   a1 
  0   1   0   a2 
  0   0   1   a3 
  0   0   0    1 
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For example, to move point P(2,3,1) by vector v<2,2,2>, the new point location is: 

 P’ = P + v = (2+2, 3+2, 1+2) = (4, 5, 3) 

If we use the matrix form and multiply the translation matrix by the input point, then we 
get the new point location as in the following: 

 

  1   0   0   2  2   1*2+0*3+0*1+2*1   4 
  0   1   0   2  3 =  0*2+1*3+0*1+2*1 =  5 
  0   0   1   2  1   0*2+0*3+1*1+2*1   3 
  0   0   0   1  1   0*2+0*3+0*1+1*1   1 

Rotation transformation 

This example shows how to calculate rotation around z-axis and origin point using 
trigonometry, and then deduce the general matrix format for the rotation.  

Take a point on x,y plane P(x,y) and rotate it by angle(b). From the figure, we can say 
the following: 

 x = d cos(a)   ---(1) 
 y = d sin(a)      ---(2) 
 x' = d cos(b+a)  ---(3) 
 y' = d sin(b+a)    --- (4) 

Expanding 3 and 4 using trigonometric identities 
for the sine and cosine of the sum of angles: 

 x' = d cos(a)cos(b) - d sin(a)sin(b) ---(5) 
 y' = d cos(a)sin(b) + d sin(a)cos(b) ---(6) 

Using Eq 1 and 2: 

 x' = x cos(b) - y sin(b) 
 y' = x sin(b) + y cos(b)  

Using the homogenous coordinates, the rotation matrix around z-axis looks like: 

 cos(b)  -sin(b)   0    0 
 sin(b)   cos(b)   0    0 
      0         0       1    0 
      0         0       0    1 

 

The rotation matrix around x-axis by angle b: 

 1       0          0        0 
 0   cos(b)  -sin(b)   0 
 0   sin(b)    cos(b)  0 
 0       0          0        1 

 

The rotation matrix around y-axis by angle b: 

 cos(b)     0     sin(b)    0 
    0          1        0        0 
 -sin(b)     0     cos(b)   0     
    0          0        0        1 
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OpenNURBS™, the Rhino geometry library (http://www.openNURBS.org), contains a 
class called OnXform that handles transformations. It stores a transformation matrix 
and performs matrix operations. The following is an example of how to rotate an object 
and examines OnXform matrix values to compare to the general format of the rotation 
matrix. You can use the same principle to examine other transformations. 

 
Here is a Grasshopper definition for rotating geometry and output matrix values to 
compare with the general matrix format: 

 
Figure (22): Rotate geometry and print the transformation matrix 

Scale transformation 

We know that: 

 P' = ScaleFactor(S) * P 

or: 

 P'.x = Sx * P.x 

 P'.y = Sy * P.y 

 P'.z = Sz * P.z 

 

This is the matrix format for scale transformation. 

  Sx    0    0    0 
  0     Sy   0    0 
  0     0    Sz   0 
  0     0    0    1 
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Shear transformation 

Shear in 3-D is measured along a pair of axes relative to the third axis. For example, a 
shear along a z-axis will not change geometry along that axis, but will alter x and y.  

1- Shear in x and z, keeping the y-coordinate fixed: 

 
2- Shear in y and z, keeping the x-coordinate fixed: 

 
3- Shear in x and y, keeping the z-coordinate fixed: 

 
Here is a GH definition to change different values in the transformation matrix: 

 
Figure (23): Shear Matrix 
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Planar Projection transformation 

Intuitively, the projection point of a given 3D point P(x,y,z) on the world xy-plane 
equals Pxy(x,y,0).  Similarly, a projection to xz-plane of point P is Pxz(x,0,z).  When 
projecting to yz-plane, Pxz = (0,y,z).  Those are called orthogonal projections1.  

So if we have a curve as an input and we apply the planar projection transformation, 
then we get a projected curve to that plane. The following shows an example of 
projected curve to xy-plane with the matrix format.  Note that NURBS curves 
(explained in the next chapter) use control points to define curves.  Projecting a curve 
mounts to projecting its control points. 

 

                                                

 
1
 For more details see: http://en.wikipedia.org/wiki/Projection_(linear_algebra)  
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3 Parametric Curves and Surfaces 

Introduction 
Parametric curves are very compact and an intuitive way to represent smooth curves. 
They also are very easy to modify compared to other representation formats. For 
example, polylines use first-degree piecewise approximation and therefore use a large 
number of points to store a curve that is somewhat smooth. In addition, curve 
manipulation is very tedious, especially if the smoothness of the curve needs to be 
maintained. The higher the accuracy of the curve, the heaver the curve storage grows 
and the more difficult to it is edit.  

A parametric curve is a function of one independent 
parameter (usually denoted t)2 over some domain 
(usually between 0 and 1).  Consider for example the 
path traced out by a traveler.  The domain is the time 
between the trip start and the trip end.  The 
parametric representation gives the travelers location 
at any time in addition to the locations that he traveler 
passed through.   

 

Let’s take for example a circle. You probably remember the circle equation to be: 

 x2 + y2 = r2 

The parametric equation of the circle is defined using parameter “t” as follows: 

 x = r cos(t) 

 y = r sin(t) 

Just to show that the two represent same curve, we can derive the original equation for 
the parametric one as follows: 

 x/r = cos(t) 

 y/r = sin(t) 

And since: 

 cos(t)2 + sin(t)2 = 1 (Pythagorean identity) 

Then: 

 (x/r)2 + (y/r)2 = 1, or x2 + y2 = r2 

Cubic polynomial curves 
Hermite3 and Bézier4 curves are two examples of cubic polynomial curves that are 
determined by four parameters. A Hermite curve is determined by two end points and 
two tangent vectors at these points, while a Bézier curve is defined by four points. 
While they differ mathematically, they share similar characteristics and limitations. 

                                                

 
2
 For more details see: http://en.wikipedia.org/wiki/Parametric_equation  

3
 For more details see: http://en.wikipedia.org/wiki/Cubic_Hermite_spline 

4
 For more details, see: http://en.wikipedia.org/wiki/B%C3%A9zier_curve 
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In most cases, curves are made out of multiple segments.  This requires making what 
is called piecewise cubic curves.  Here is an illustration of a piecewise Bezier curve 
that uses 10 storage points to create a three-segment curve.  Note that although the 
final curve is joined, it does not look smooth. 

 
Although Hermite curves use same amount of parameters as that is of Bezier (4 to 
define a curve), we have additional information of the tangent curve that can be shared 
with the next piece to create smoother looking curve with less storage as in the 
following figure: 

 
In order to maintain even smoother and more continuous curves, there is a powerful 
curve representation called Non Uniform Rational B-Spline5 (NURBS).  Segments 
share more control points to achieve even smoother curve with less storage as in the 
following: 

                                                

 
5
 For more details, see: http://en.wikipedia.org/wiki/Non-uniform_rational_B-spline 
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NURBS curves and surfaces are the main mathematical representation used by Rhino 
to represent geometry. NURBS curves characteristics and components will be covered 
with some detail later in this chapter. 

But how does the parametric equation of a cubic polynomial curve look like? You will 
likely not need to use these equations in your work, but I thought it would be useful to 
include the generic form so that you have a reference of it.   

The parametric equation of a cubic polynomial curve segment: 

 Q(t) =   x(t) 

              y(t) 

              z(t) 

Takes the form: 

 x(t) = axt
3 + bxt

2 + cxt + dx 

 y(t) = ayt
3 + byt

2 + cyt + dy 

 z(t) = azt
3 + bzt

2 + czt + dz 

We can rewrite the above Q(t) equation to be:: 

 Q(t) = C. T 

Where T is: 

 T =    t3 

           t2 

           t 

          1 

And C is the matrix of coefficients: 

 C =   ax   bx   cx   dx 

              ay   by   cy   dy 

              az   bz   cz   dz 

 

We can quickly verify that we can get the original form of the curve equation using 
matrix multiplication: 

 Q(t) = C. T  =    ax   bx   cx   dx             t
3    =    axt

3 + bxt
2 + cxt + dx     =    x(t) 

                          ay   by   cy   dy     .       t
2          ayt

3 + byt
2 + cyt + dy     =    y(t) 

                          az   bz   cz   dz             t
3          azt

3 + bzt
2 + czt + dz     =    z(t) 

                1 
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Geometric continuity 
Continuity is an important concept in 3-D modeling. Continuity is important for 
achieving visual smoothness and for obtaining smooth light and airflow. 

The following table shows various continuities and their definitions: 

G0 (Position 
continuous) 

Two curve segments joined together 

G1 (Tangent 
continuous) 

Direction of tangent at joint point is the same for both curve 
segments 

G2 ( Curvature 
Continous) 

Curvatures as well as tangents agree for both curve 
segments at the common endpoint 

GN The curves argree to higher order. 

The following example compares curves continuities between curve “a” from one side 
and curves “b”, “c”, and “d” from the other.  The GH script components calculate 
tangent vector of each curve at point P and the length of that vector.  That is: 

A = Tangent vector at joint point 

L = the length of the vector 

 
Figure (24): Examining curve continuity 
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Note that: 

 Curves A and B are G0 continuous (different tangent vector at joint) 

 Curves A and C are G1 continuous (same tangent vector at joint) 

 Curves A and D are G2 continuous (G1 and curvature agrees at the joint) 

Curvature 
Curvature is a widely used concept in modeling 3-D curves and surfaces. Curvature is 
defined as the change in inclination of a tangent to a curve over unit length of arc. For 
a circle or sphere, it is the reciprocal of the radius.  

At any point on a curve in the plane, the line best approximating the curve that passes 
through this point is the tangent line. We can also find the best approximating circle 
that passes through this point and is tangent to the curve. The reciprocal of the radius 
of this circle is the curvature of the curve at this point.  

The best approximating circle can lie either to the left or to the right of the curve. If we 
care about this, then we establish a convention, such as giving the curvature positive 
sign if the circle lies to the left and negative sign if the circle lies to the right of the 
curve. This is known as signed curvature.  

Curvature values of joined curves indicate continuity between these curves as in the 
following illustration. 

 
For surfaces, normal curvature is one generalization of curvature to surfaces. Given a 
point on the surface and a direction lying in the tangent plane of the surface at that 
point, the normal section curvature is computed by intersecting the surface with the 
plane spanned by the point, the normal to the surface at that point, and the direction. 
The normal section curvature is the signed curvature of this curve at the point of 
interest. 

If we look at all directions in the tangent plane to the surface at our point, and we 
compute the normal curvature in all these directions, then there will be a maximum 
value and a minimum value. 

Principal curvatures 

The principal curvatures of a surface at a point are the minimum and maximum of the 
normal curvatures at that point. The principal curvatures are used to compute the 
Gaussian and mean curvatures of the surface. 
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Gaussian curvature 

The Gaussian curvature of a surface at a point is the product of the principal 
curvatures at that point. The tangent plane of any point with positive Gaussian 
curvature touches the surface locally at a single point, whereas the tangent plane of 
any point with negative Gaussian curvature cuts the surface 

 
A: Positive curvature when surface is bowl-like 

B: Negative curvature when surface s saddle-like 

C: Zero curvature when surface is flat in at lease one direction (plane, cylinder, etc.) 

Mean curvature 

The mean curvature of a surface at a point is one half the sum of the principal 
curvatures at that point. Any point with zero mean curvature has negative or zero 
Gaussian curvature. 

Surfaces with zero mean curvature everywhere are minimal surfaces. Surfaces with 
constant mean curvature everywhere are often referred to as constant mean curvature 
(CMC) surfaces. 

Physical processes which can be modeled by CMC surfaces include the formation of 
soap bubbles, both free and attached to objects. A soap bubble, unlike a simple soap 
film, encloses a volume and exists in equilibrium where slightly greater pressure inside 
the bubble is balanced by the area-minimizing forces of the bubble itself. 

Minimal surfaces are the subset of CMC surfaces where the curvature is zero 
everywhere. 

Physical processes which can be modeled by minimal surfaces include the formation 
of soap films spanning fixed objects, such as wire loops. A soap film is not distorted by 
air pressure (which is equal on both sides) and is free to minimize its area. This 
contrasts with a soap bubble, which encloses a fixed quantity of air and has unequal 
pressures on its inside and outside. Mean curvature is useful for finding areas of 
abrupt change in the surface curvature. 
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Algorithms for evaluating parametric curves 

De Casteljau6 algorithm for evaluating cubic Bézier curves 

Named after its inventor, Paul De Casteljau, this algorithm evaluates Bézier curves 
using a recursive method. 

We will show the algorithm to find any point on the curve at parameter t using 
De Casteljau algorithm using Grasshopper. We will need the following input: 

 4 points A, B, C, D 

 t, which is a parameter on the curve within 
curve domain (0-1) 

Output: 

 Point on curve that is at  parameter t 

Solution steps: 

1. Find point M at t parameter on line AB 

2. Find point N at t parameter on line BC 

3. Find point O at t parameter on line CD 

4. Find point P at t parameter on line MN 

5. Find point Q at t parameter on line NO 

6. Find point R at t parameter on line PQ 

 

 
Figure (25): Create Bezier curve in GH 

This is the Grasshopper definition to evaluate a parameter on a Bézier curve using 
De Casteljau algorithm. Note that you can change t value between 0 and 1 to find 
points between the start and end of the Bézier curve. 

                                                

 
6
 De Casteljua’s algorithm details are found in 

http://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm 
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Figure (26): Evaluate points on a Bezier curve using De Casteljau algorithm 

De Boor7 algorithm for evaluating NURBS curves 

DeBoor’s algorithm is a generalization of De Casteljau algorithm for Bezier curves.  It 
is numerically stable and is widely used to evaluate a point on NURBS curves in 3D 
applications.  The following is an example to evaluate a point on a degree 3 NURBS 
curve using DeBoor’s algorithm8. 

Input 

7 control points P0 to P6 

Knot vector: 

u0 = 0.0 

u1 = 0.0 

u2 = 0.0 

u3= 0.25 

u4 = 0.5 

u5 = 0.75 

u6 = 1.0 

u7 = 1.0 

u8 = 1.0 

Output: 

 Point on curve that is at u=0.4 

 

Solution steps:  

                                                

 
7
 De Boor’s algorithm details are found in http://en.wikipedia.org/wiki/De_Boor's_algorithm 

8
 The general description of the algorithm and the example details are found in: 

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/de-Boor.html  
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1. Calculate coefficients for 
the first iteration: 

Ac = (u – u1) / ( u1+3 – u1) = 0.8 
Bc = (u – u2) / ( u2+3 – u2) = 0.53  
Cc = (u – u3) / ( u3+3 – u3) = 0.2  

2. Calculate points using 
coefficient data: 

A = 0.2P1 + 0.8P2  

B = 0.47 P2 + 0.53 P3 

C = 0.8 P3 + 0.2 P4 

 

 

3. Calculate coefficients for 
the second iteration: 

Dc = (u – u2) / (u2+3-1 – u2) = 0.8 

Ec = (u – u3) / (u3+3-1 – u3) = 0.3 

4. Calculate points using 
coefficient data: 

D = 0.2A+ 0.8B  

E = 0.7B + 0.3C  

 

5. Calculate the last coefficient 

Fc = (u – u3)/ (u3+3-2 – u3) = 0.6 

6. Find the point on curve at 
u=0.4 parameter 

F= 0.4D + 0.6E 

 

This is the Grasshopper definition to evaluate the u=0.4 parameter on a NURBS curve 
using DeBoor’s algorithm. 

 
Figure (27): Evaluate a point on a NURBS curve using De Boor algorithm 
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NURBS curves 
NURBS is an accurate mathematical representation of curves and surfaces that is 
highly intuitive to edit.  

There are many books and references for those of you interested in an in-depth 
reading about NURBS (http://en.wikipedia.org/wiki/NURBS). A basic understanding of 
NURBS is necessary to help you use the NURBS modeler more effectively.  

Four attributes define a NURBS curve: degree, control points, knots, and evaluation 
rules: 

Degree 

Degree is a whole positive number. Rhino allows working with any degree starting 
with 1. Degree 5 is also common, but the degrees above 5 are not very useful in the 
real world. Following are a few examples of curves and their degree: 

Lines and polylines are degree 1 
NURBS curves.  

Order = 2 (order = degree + 1) 

 

Circles and ellipses are examples 
of degree 2 NURBS curves.  

They are also rational or non-
uniform curves.  

Order = 3. 

 

Free-form curves are usually 
represented as degree 3 NURBS 
curves. 

Order = 4 

Control points 

The control points of a NURBS curve is a list of at least (degree+1) points. The most 
common way to change the shape of a NURBS curve is through moving its control 
points. 

Control points have an associated number called a weight. With a few exceptions, 
weights are positive numbers. When a curve’s control points all have the same weight 
(usually 1), the curve is called non-rational. We will have an example showing how to 
change the weights of control points interactively in Grasshopper. 



Essential Mathematics for Computational Design 

 32 

Knots or knot vector 

Each NURBS curve has a list of numbers associated with it that is called a knot vector. 
Knots are a little harder to understand and set, but luckily there are SDK functions that 
do the job for you. Nevertheless, there are few things that will be useful to learn about 
knot vectors. 

 

Knots are parameter values 

The knots are a non-decreasing list of parameter values.  There are degree-1 more 
knots than control points.   Usually , for non-periodic curves, the first degree many 
knots are the same and the last degree many are the same .  The domain of the 
curve is between these extreme knot  values. 

 

Knot multiplicity  

The multiplicity of a knot is the number of times it is listed in the knot vector.  The 
multiplicity of a knot can not be more than the degree of the curve.   Knot multiplicity 
is used to control continuity at the corresponding curve point. 

 

Full-multiplicity knot  

A fully multiple knot has multiplicity equal to the curve degree.  At a fully multiple 
knot there is a corresponding control point, and the curve goes through this point. 

For example, clamped curves have knots with full multiplicity at the ends of the 
curve. This is why end control points coincide with curve end points.   An interior 
fully multiple allows for a kink in the curve at the corresponding point. 

 

Simple knot 

A knot with value appearing only once. 

 

Uniform knot vector 

A uniform knot vector satisfies two conditions:  

1. Knots start with a full-multiplicity knot, are followed by simple knots, and 
terminate with a full-multiplicity knot. The values are increasing and equally 
spaced. This is typical of clamped curves. Periodic curves work differently as 
we will see later. 

Here are two curves with identical control points but different knot vectors: 
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Degree = 3 
Number of control points = 7 
knot vector = (0,0,0,1,2,3,5,5,5) 

 

Degree = 3 
Number of control points = 7 
knot vector = (0,0,0,1,1,1,4,4,4) 
Note: Full knot multiplicity in the middle 
creates a kink and  the curve is forced to go 
through the associated control point.  

Evaluation rule 

The evaluation rule uses a mathematical formula that takes a number and assigns a 
point. The formula involves the degree, control points, and knots. 

Using this formula, SDK functions can take a curve parameter and produce the 
corresponding point on that curve. A parameter is a number that lies within the curve 
domain. Domains are usually increasing and they consist of two numbers: minimum 
domain parameter (m_t(0)) that is usually the start of the curve and maximum (m_t(1)) 
at the end of the curve.  

Characteristics of NURBS curves 
In order to create a NURBS curve, you will need to provide the following information: 

• Dimension, which is typically 3. 

• Degree, (sometimes use “order” which is degree + 1) 

• Control points (array of points). 

• Knot vector (array of numbers). 

• Specify if the curve is rational (we will explain the notion of rational curves in the 
weights discussion). 

 

Using a 3D modeler, you will typically need to specify the degree of the curve and 
control points.  The rest of the information necessary to construct a NURBS curves 
would be generated automatically.  Selecting an end point to coincide with the start 
point would typically create a periodic smooth closed curve.  The following figure 
shows open (clamped) curve, closed curve that is not periodic and closed curve that is 
periodic. We will discuss clamped vs periodic curves in the next section.  

Degree 1 open curve. 

Note how the curve goes through all control 
points. 
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Degree 3 open curve. 

Both curve ends coninside with end control 
points. 

 

Degree 3 closed (non-periodic) curve. 

Start and end point of the curve overlap a 
control point. 

 
 

Moving the control point of a non-periodic 
curve causes a kink and the curve does not 
look smooth. 

 

Degree 3 closed periodic curve. 

Note that curve end/start does not go 
through a control point.  That point is called 
“curve seam”. In is noted in red in the 
figure. 

 

Moving control points of a periodic curve 
does not affect curve smoothness or cause 
any kink. 
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Clamped vs. periodic NURBS curves 

Clamped curves are curves (usually open) where curve ends coincide with end control 
points. Periodic curves are smooth closed curves. The best way to understand the 
differences between the two is through comparing control points. 

The following component creates clamped NURBS curve and prints control points and 
knot vector: 

 
Figure (28): Analyze clamped NURBS curves 

Here is the periodic curve using same input (control points and curve degree): 

 
Figure (29): Analyze periodic NURBS curves 

Notice that the periodic curve turned the four input points into seven control points 
(4 + degree), while the clamped curve used only four control points. The knot vector of 
the periodic curve uses only simple knots, while the clamped curve start and end knots 
have full multiplicity. 

Here are some examples of degree 2 curves. As you may have guessed, the number 
of control points and knots of periodic curves change when degree changes. 



Essential Mathematics for Computational Design 

 36 

 
Figure (30): Analyze degree 2 NURBS curves 

Weights 

Weights of control points in a uniform NURBS curve are set to 1, but this number can 
vary in rational NURBS curves. The following example shows how to modify weights of 
control points interactively in Grasshopper. 

 
Figure (31): Analyze weights in NURBS curves 

NURBS surfaces 
You can think of NURBS surfaces as a grid of NURBS curves that go in two directions. 
The shape of a NURBS surface is defined by a number of control points and the 
degree of that surface in each one of the two directions (u- and v-directions).  
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Figure (31): NURBS surface domain 

NURBS surfaces can be trimmed or untrimmed. Trimmed surfaces use an underlying 
NURBS surface and closed curves to cut a specific shape of that surface. Each 
surface has one closed curve that defines the outer border (outer loop) and non-
intersecting closed inner curves to define holes (Inner loops). A surface with an outer 
loop that is the same as that of its underlying NURBS surface and that has no holes is 
what we refer to as an untrimmed surface. 

 
Figure (32): Trimmed NURBS surface 

The surface on the left is untrimmed. The surface on the right is the same surface 
trimmed with an elliptical hole. Notice that the NURBS structure of the surface does 
not change when trimming. 

Characteristics of NURBS surfaces 
NURBS surfaces characteristics are very similar to that of the NURBS curves except 
there is one additional direction. NURBS surfaces holds the following information: 

• Dimension, which is typically 3. 

• Degree in u and v directions: (sometimes use “order” which is degree + 1) 

• Control points in u and v directions  

• Knot vector (2D array of numbers). 

• Specify if the surface is rational. 

As with the NURBS curves, you will unlikely need to know the details of how to create 
a NURBS surface since the 3D modeler will typically provide good set of tools to help.  
You can always rebuild surfaces (and curves for that matter) to new degree and 
number of control points.  Also the type of the surface can be open, closed or periodic.  
Here are few examples of surfaces with different degrees, number of control points 
and whether they are open or periodic: 
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Degree 1 surface in both u and v directions.  
All control points lay on the surface 

 

Degree 3 u direction and degree 1 in v 
direction open surface. 

Note how surface corners coincide with 
corner control points. 

 

Degree 3 u direction and degree 1 in v 
direction closed (non-periodic) surface. 

Note that there are control points that 
coincide with surface seam. 

 

Moving control points of a closed (non-
periodic) surface causes a kink and the 
surface does not look smooth. 
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Degree 3 u direction and degree 1 in v 
direction periodic surface. 

Note that surface control points do not 
coincide with the surface seam. 

 

Moving control points of a periodic surface 
does not affect surface smoothness or 
create any kink. 

 

Polysurfaces 
A polysurface consists of two or more (possibly trimmed) NURBS surfaces joined 
together. Each surface has its own parameterization and u-,v-directions that do not 
have to match. Polysurfaces and trimmed surfaces are represented using what is 
called boundary representation (brep for short). It basically describes surface, edge, 
and vertex geometry with trimming data and relationships among different parts. For 
example, the brep describes each face, its surrounding edges and trims, normal 
direction relative to the surface, relationship with neighboring faces and so on. Breps 
can also be called solids when they are closed or watertight. 

In the case of following box, it is made out of 6 untrimmed surfaces joined together: 

 
Figure (33): Polysurfaces are made out of joined NURBS surfaces 

Many polysurfaces are made out of joined trimmed surfaces.  The top and bottom 
faces of the cylinder in the following example are trimmed out of planar surfaces. 
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Figure (34): Polysurface faces can be trimmed NURBS surfaces 

We saw that editing NURBS curves a surfaces is very intuitive and can be done 
interactively by moving control points.  However, editing polysurfaces and maintain 
joined edges of different faces is not as intuitive.  There are tools that are provided by 
the 3D NURBS modelers to edit or deform polysurfaces directly, but it is also common 
to explode a polysurface to its component surfaces, edit those, and then joint back 
together.  In that process, the user must maintain that edges align correctly within 
tolerance to be able to join successfully. 

Example 

Show the steps of create a round hole in a box. 

 

Start with a box and a circle that marks the 
location and diameter of the hole. 

 

Project the circle to the box. 
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Use projection circles to trim top and 
bottom faces of the box. 

 

Use projection circles to create rolled 
surface between them. 

 

Join the trimmed surfaces and the hole wall 
all together. 
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