MODELAÇÃO 3D - 2012/2013 - 2°semestre

Professor Luís Mateus.

BLOCO 9 (semana 12 / 6Mai-10Mai)

>> Kerkyrhea

DESCARREGAR O KERKYTHEA + SKETCHUP EXPORTER

www.kerkythea.net

Descarregar e instalar os seguintes ficheiros:

>> Kerkythea2008.exe http://www.youtube.com/watch?v=_Lura6wxdzI

>> SU2KT_3_17.zip (seguir as instruções do ficheiro *.txt)
>> SU2KT_LightingFixtures.zip (seguir as instruções do ficheiro *.txt)

AMBIENTE DE TRABALHO DO KERKYTHEA

Ver tutorial (Getting-Started_KT2008_1-01.pdf).

O Kerkythea pode ainda ser enriquecido com modelos (MODELS) e com imagens de fundo (GLOBALS).

DESCARREGAR E INSTALAR BIBLIOTECAS DE MATERIAIS

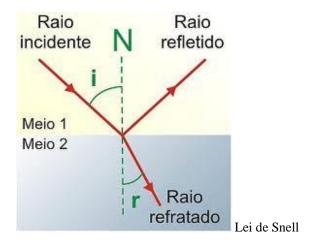
No site do Kerkythea é possível descarregar bibliotecas de materiais.

 $\underline{\text{http://www.kerkythea.net/joomla/index.php?option=com_remository\&Itemid=42\&func=select\&id=3}$

As bibliotecas vêm no formato *.mat.zip. Para instalar uma biblioteca, deverá proceder-se do seguinte modo no Kerkythea: File->Install lybrary. Uma vez instalada a biblioteca, esta pode ser acedida também a partir do SketchUP.

Se forem aplicadas boas texturas a partir do SketchUP, provavelmente não precisarão ser editadas no Kerkythea. No site de texturas http://www.cgtextures.com/ podem descarregar-se texturas (*.jpg) de boa qualidade (é preciso registar-se para poder descarregar texturas). Estas texturas podem ser utilizadas directamente no SketchUP, mas também podem ser inseridas no Kerkythea. Neste caso as texturas vêm sobre a forma de imagens e não como bibliotecas.

Outro repositório de texturas é o Forum do Kerkythea http://www.kerkythea.net/phpBB2/viewforum.php?f=19. Tal como no caso anterior, o mais frequente é as texturas serem disponibilizadas sob a forma de imagens (*.jpg).


EXPORTAR DO SKETCHUP PARA O KERKYTHEA / EDIÇÃO BÁSICA

http://www.youtube.com/watch?v=Gi33oug8MTc

http://www.youtube.com/watch?v=uS8rwYs8G5g

Notas importantes:

- Todas as faces do modelo devem estar "voltadas" para o exterior.
- Não ter nada seleccionado aquando da exportação do SketchUP para o Kerkythea.

Em superfícies polidas, a reflexão diz-se ESPECULAR.

Em superfícies mate (Lambertianas), a reflexão é do tipo DIFUSO. O aspecto desta reflexão traduz a "cor" do material.

Na verdade, as superfícies nunca serão 100% especulares, nem 100% mate.

O excerto seguinte foi retirado da Wikipedia (http://pt.wikipedia.org/wiki/Refra%C3%A7%C3%A3o)

Leis da refração

Consideremos dois meios transparentes A e B e um feixe estreito de luz monocromáctica, que se propaga inicialmente no meio A, dirigindo-se para o meio B. Suponhamos, ainda, que uma parte da luz consiga penetrar no meio B e que a luz tenha velocidades diferentes nos dois meios. Nesse caso, diremos que houve **Refração**. O raio que apresenta o feixe incidente é o **raio incidente** (i), e o raio que apresenta o feixe refratado é o **raio refratado** (r).

A primeira lei da Refração

O raio incidente, o raio refratado e a normal, no ponto de incidência, estão contidos num mesmo plano.

A normal é uma reta perpendicular à superfície no ponto de incidência, θ_A é denominado ângulo de incidência entre o raio e a normal e θ_B , ângulo de refração entre o raio e a normal.

A segunda lei da Refração

Os senos dos ângulos de incidência e refracção são diretamente proporcionais às velocidades da onda nos respectivos meios.

Ou seja:

$$n_A \cdot sen \, \theta_A = n_B \cdot sen \, \theta_B$$

Dessa igualdade tiramos:

$$\frac{sen\,\theta_A}{sen\,\theta_B} = n_{BA}$$

A Segunda Lei da Refração foi descoberta experimentalmente pelo holandês <u>Willebrord van Royen Snell</u> (1591-1626) e mais tarde deduzida por <u>René Descartes</u>, a partir de sua teoria corpuscular da luz. Nos Estados Unidos, ela é chamada de **Lei de Snell** e na França, de **Lei de Descartes**; em Portugal e no Brasil é costume chamá-la de <u>Lei de Snell-Descartes</u>.

Inicialmente a Segunda Lei foi apresentada na forma da equação II; no entanto, ela e mais fácil de ser aplicada na forma da equação I.

Observando a equação I, concluímos que, onde o ângulo for **menor**, o índice de refração será **maior**. Explicando melhor: se $\theta_A > \theta_B$, o mesmo ocorre com seus senos, $sen\ \theta_A > sen\ \theta_B$; logo, para manter a igualdade da equação I, $n_B > n_A$. Ou seja, o menor ângulo θ_B ocorre no meio mais refringente, n_B .

Pelo princípio da reversibilidade, se a luz faz determinado percurso, ela pode fazer o percurso inverso. Assim, se ela faz o percurso XPY, ela pode fazer o percurso YPX. Mas, tanto num caso como no outro, teremos:

$$n_A \cdot sen \, \theta_A = n_B \cdot sen \, \theta_B$$

Quando a incidência for normal, não haverá desvio e teremos $\theta_A = \theta_B = 0$, e, portanto, $sen\ \theta_A = sen\ \theta_B = 0$, de modo que a Segunda Lei também é válida nesse caso, na forma da equação I:

$$n_A\left(0\right) \; = \; n_B\left(0\right)$$

Resumindo, o índice de refracção está relacionado com o modo como a luz inflecte ao mudar de meio.

O excerto seguinte foi retirado do site http://vbcordigital.blogspot.pt/2011/02/transmitancia-absortancia-e.html

Resumindo, da luz incidente sobre um meio, parte é absorvida, parte é reflectida e parte é transmitida ao novo meio. A soma destas três parcelas (em percentagem) deve perfazer 100%.

A tabela seguinte, relativa a índices de refracção, foi retirada do site http://opticanet.com.br/

Meio material	Îndice de refração (n)	Meio material	Îndice de refração (n)
ar	1,000	Cr39	1,498
água	1,330	Vidro crown	1,523
glicerina	1,470	Vidro high lite	1,701
vidro	1,500 a 1,900	Policarbonato	1,590
diamante	2,420	Super high lite(lantânio)	1,800
acrílico	1,490	Hiper high lite (lantânio)	1,900

ESTRATÉGIAS DE ARTICULAÇÃO ENTRE O SKETCHUP E O KERKYTHEA

Est. 1. Aplicar cores como textura e compor as cenas no SketchUP; Exportar o modelo para o Kerkythea e aí substituir as cores por materiais; Renderizar.

Est. 2. Aplicar texturas no SketchUP (eventualmente importadas do Kerkythea) e compor as cenas; Exportar o modelo para o Kerkythea e aí afinar a edição de materiais; Renderizar.